Computer Modeling - Spring 2008 -

- Draw the following three graphs by simulation
 - traffic load (0-0.95) vs. average # of jobs in the system
 - traffic load (0-0.95) vs. average queue length
 - traffic load (0-0.95) vs. average queueing delay for each job
- Draw the same three graphs by M/M/1 queueing analysis results
- When simulating the system with a traffic load 1.0 and 1.5,
 - Observe what happens in your simulation
 - Discuss how to handle such situation

- Draw the following three graphs by SMPL simulation
 - traffic load (0-0.95) vs. average # of jobs in the system
 - traffic load (0-0.95) vs. average queue length
 - traffic load (0-0.95) vs. average queueing delay for each job
- Compare the three graphs with the graphs of Homework 1
- When simulating the system with a traffic load 1.0 and 1.5,
 - Observe what happens in your simulation
 - Discuss how to handle such situation

Homework 3 (Cont.)

- Let
 - Service rates: μ_1 =1.333, μ_2 =1/1, μ_3 = 1/2, μ_4 =1/4
 - Job transferring probs: p₁=p₂=p₃=p₄=0.25
- As increasing λ (x-axis) from 1/20 to 1/1, draw the followings by "SMPL" Simulation
 - L1, L2, L3, L4, W1, W2, W3, W4, L, W
 - Utilization of each server
- Draw the same curves by analysis
- Answer the followings
 - Which server is the bottleneck that first makes the system unstable
 - How to reassign server rates so that λ can be maximized while keeping the system stable

- Draw the following three graphs by OMNet++ simulation
 - traffic load (0-0.95) vs. average # of jobs in the system
 - traffic load (0-0.95) vs. average queue length
 - traffic load (0-0.95) vs. average queueing delay for each job
- Compare the three graphs with the graphs of Homework 1
- When simulating the system with a traffic load 1.0 and 1.5,
 - Observe what happens in your simulation
 - Discuss how to handle such situation

Homework 5 (Cont.)

- Let
 - Service rates: $\mu_1 = 1/3$, $\mu_2 = 1/1$, $\mu_3 = 1/2$, $\mu_4 = 1/4$
 - Job transferring probs: p₁=p₂=p₃=p₄=0.25
- As increasing λ (x-axis) from 1/20 to 1/1, draw the followings by "OMNet++" Simulation
 - L1, L2, L3, L4, W1, W2, W3, W4, L, W
 - Utilization of each server
- Draw the same curves by analysis
- Answer the followings
 - Which server is the bottleneck that first makes the system unstable
 - How to reassign server rates so that λ can be maximized while keeping the system stable

- 2 periodic tasks
 - $T_1 \{e_1=1, p_1=4\}$
 - $T_2 \{e_2=2, p_2=10\}$
- Four methods to process aperiodic jobs
 - background
 - polling server
 - highest priority, period = 2, server budget = 1
 - deferrable server
 - highest priority, period = 2, server budget = 5/6=0.833333
 - sporadic server
 - highest priority, period = 2, server budget = 1

Homework 6 (Cont.)

- Simulate the RM scheduler with aperiodic processing by
 - background
 - polling server (+ background if the server is idle)
 - deferrable server (+ background if the server is idle)
 - sporadic server (+ background if the server is idle)
- Compare the response time of aperiodic jobs for the above four cases as decreasing the average inter-arrival time from 10 to 0.4 while fixing the average execution time to 0.1
- Do the same as decreasing the average inter-arrival time from 1000 to 40 while fixing the average execution time to 10
- Explain your results

• Simulate the following network

- Each application traffic source starts at 10 sec and stops at 20 sec.
- Plot the received bytes at each sink at every 0.5 sec period.

- Make a newPing in NS2
 - once started, it sends probing packets 5 times periodically at every 1 sec.
- Using the same network of Homework 7, measure the round-trip delays of each way between node 1 and 5
 - first newPing start at 1.0 sec
 - second newPing start at 11.0 sec

- Make a newDsdv in NS2
 - Add or Modify at least one feature of DSDV
 - Clearly explain the added or modified features in your report
 - Implement newDsdv with the added or modified features
- Run the simulation to show the difference between DSDV and newDsdv