Homework

(EXAMPLE 4-5) A point charge Q is at a distance d from the center of a grounded conducting sphere of radius a (a < d). Determine (a) the charge distribution induced on the surface of the sphere, and (b) the total charge induced on the sphere.

(EXAMPLE 4-8) Consider a very long coaxial cable. The inner conductor has a radius *a* and is maintained at a potential V_0 . The outer conductor has an inner radius *b* and is grounded. Determine the potential distribution in the space between the conductors.

(EXAMPLE 4-10) An uncharged conducting sphere of radius *b* is placed in an initially uniform electric field $\vec{E}_0 = \hat{a}_z E_0$. Determine (a) the potential distribution $V(R, \theta)$, and (b) the electric field intensity $\vec{E}(R, \theta)$ after the introduction of the sphere.

Homework

P.4-5 Assume a point charge Q above an infinite conducting plane at y = 0.

- a) Prove that V(x, y, z) in Eq. (4-37) satisfies Laplace's equation if the conducting plane is maintained at zero potential.
- b) What should the expression for V(x, y, z) be if the conducting plane has a nonzero potential V_0 ?
- c) What is the electrostatic force of attraction between the charge Q and the conducting plane?

P.4-17 Two dielectric media with dielectric constants ε_1 and ε_2 are separated by a plane boundary at x = 0, as shown in Fig. 4-23. A point charge Q exists in medium 1 at distance d from the boundary

- a) Verify that the field in medium 1 can be obtained from Q and an image charge $-Q_1$, both acting in medium 1.
- b) Verify that the field in medium 2 can be obtained from Q and an image charge $+Q_2$, both acting in medium 2.
- c) Determine Q_1 and Q_2 . (*Hint* : Consider neighboring points P_1 and P_2 in media 1 and 2, respectively, and require the continuity of the tangential component of the \vec{E} -field and of the normal component of the \vec{D} -field.)

Homework

P.5-9 Two lossy dielectric media with permittivities and conductivities (ε_1, σ_1) and (ε_2, σ_2) are in contact. An electric field with a magnitude E_1 is incident from medium 1 upon the interface at an angle α_1 measured from the common normal, as in Fig. 5-10.

- a) Find the magnitude and direction of E_2 in medium 2.
- b) Find the surface charge density at the interface.
- c) Compare the results in parts (a) and (b) with the case in whice both media are perfect dielectrics.

P.5-10 The space between two parallel conducting plates each having an area *S* is filled with an inhomogeneous ohmic medium whose conductivity varies linearly from σ_1 at one plate(y = 0) to σ_2 at the other plate(y = d). A d-c voltage V_0 is applied across the plates as in Fig. 5-11. Determine

- a) the total resistance between the plates,
- b) the surface charge densities on the plates,
- c) the volume charge density and the total amount of charge between the plates.

P.5-21 A ground connection is made by burying a hemispherical conductor of radius 25(mm) in the earth with its base up, as shown in Fig. 5-13. Assuming the earth conductivity to be 10^{-6} (S/m), find the resistance of the conductor to far-away points in the ground. (*Hint*: Use the image method in P.5-20.)