[Exercises 1] Samples

1.2 Consider a single-input-single-output system described by the nth-order differential equation
$y^{(n)}=g_{1}\left(t, y, \dot{y}, \cdots, y^{(n-1)}, u\right)+g_{2}\left(t, y, \dot{y}, \cdots, y^{(n-2)}\right) \dot{u}$
Where g_{2} is a differentiable function of its arguments. With u as input and y as output, find a state model.

Hint: Take $x_{n}=y^{(n-1)}-g_{2}\left(t, y, \dot{y}, \cdots, y^{(n-2)}\right) u$.

- Hint를 참고하여, state variable x 를 정리하면,
$x_{1}=y-g_{2}\left(t, y y^{(1)}\right) u$
$x_{2}=y^{(1)}-g_{2}(t, y) u$
$x_{3}=y^{(2)}-g_{2}\left(t, y, y^{(t)}\right) u$
$x_{n}=y^{(n-1)}-g_{2}\left(t, y, y^{(0)}, \cdots, y^{(n-2)}\right) u$
식 (1)이 주어진 $y^{(n)}$ 을 대입하면,
$x_{1}=g_{1}\left(t, y^{(-1)}, u\right)+g_{2}\left(t, y^{(-2)}\right)-g_{2}\left(t, y^{(-1)}\right) u$
$x_{2}=g_{1}(t, y, u)+g_{2}\left(t, y^{(-1)}\right)-g_{2}(t, y) u$
$x_{3}=g_{1}\left(t, y, y^{(i)}, u\right)+g_{2}(t, y)-g_{2}\left(t, y, y^{(1)}\right) u$
$x_{n}=g_{1}\left(t, y, y^{(1)}, \cdots, y^{(n-2)}, u\right)+g_{2}\left(t, y, y^{(1)}, y^{(n-3)}\right)-g_{2}\left(t, y, y^{(1)}, \cdots, y^{(n-2)}\right) u$

식 (2)를 y 아 대하여 편미분하면,

```
\(\dot{x}_{1}=g_{1}(t, y, u)+g_{2}\left(t, y^{(-1)}\right)-g_{2}(t, y) u-g_{2}(t, y) \dot{u}\)
    \(=g_{1}(t, y, u)+g_{2}\left(t, y^{(-1)}\right)-g_{2}(t, y) u \quad(\because \dot{u}=0)\)
\[
=x_{2}
\]
\[
\dot{x}_{2}=g_{1}(t, y, u)+g_{2}\left(t, y^{(-1)}\right)-g_{2}(t, y) u
\]
\[
\begin{equation*}
=g_{1}\left(t, y, y^{(1)}, u\right)+g_{2}(t, y)-g_{2}\left(t, y, y^{(1)}\right) u-g_{2}(t, y) \dot{u} \tag{3}
\end{equation*}
\]
\[
=g_{1}\left(t, y, y^{(i)}, u\right)+g_{2}(t, y)-g_{2}\left(t, y, y^{(i)}\right) u
\]
\[
=x_{3}
\]
\[
\dot{x}_{n}=g_{1}\left(t, y, y^{(0)}, \cdots, y^{(n-1)}, u\right)+g_{2}\left(t, y, y^{(i)}, y^{(n-2)}\right)-g_{2}\left(t, y, y^{(0)}, \cdots, y^{(n-1)}\right) u
\]
\[
\dot{x}_{n}=h\left(t, x_{1}, x_{2}, \cdots, x_{n}, u\right) \text { 라고 하면, }
\]
state-model 은 식 (3)으로부티,
```

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right], \dot{\mathbf{x}}=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4} \\
\vdots \\
h\left(t, x_{1}, x_{2}, \cdots, x_{n}, u\right)
\end{array}\right] \text { 이고, } \\
& y=x_{1}+g_{2}\left(t, x^{(-1))} u,\right.
\end{aligned}
$$

1.7 Figure 1.18 shows a feedback connection of a linear time-invariant system represented by the transfer function $G(s)$ and a nonlinear time-varying element defined by $z=\psi(t, y)$. The variables r, u, y, and z are vectors of the same dimension, and $\psi(t, y)$ is a vector-valued function. With r as input and y as output, find a state model.

Figure 1.18

전달함수를 다음과 같이 분리하여, 블록다이어그렴을 다시 그리면,

$$
\begin{aligned}
u & =r-\psi(t, y) y \\
\dot{x} & =A x+B u \quad \text { 이므로, } \\
y & =C x \\
\dot{x} & =A x+B(r-\psi(t, y) y) \quad \text { \& } \\
& =A x-B \psi(t, y) y+B r \\
& =A x-B \psi(t, C x) C x+B r \\
& =h(t, x, r) \\
y & =C x
\end{aligned}
$$

1.2)

$$
y^{(n)}=g_{1}\left(t, y, \dot{y}, \cdots, y^{(n-1)}, u\right)+g_{2}\left(t, y, \dot{y}, \cdots, y^{(n-2)}\right) \dot{u}
$$

u : input , y : output
Sol, $x_{1}=y$ 世里.

$$
\begin{align*}
& x_{2}=\dot{y} \\
& x_{n}=\ddot{y} \\
& x_{n-1}=y^{(n-2)} \\
& x_{n}=y^{(n-1)}-g_{2}\left(t, y, \dot{y}, \cdots, y^{(n-2)}\right) u .(\because \text { tinnt })
\end{align*}
$$

\therefore state model $Q \quad l_{7} y^{n-1}-g_{2}\left(t, x_{1}, x_{2}, \cdots, x_{n-1}\right) u_{\text {/ }}$

$$
\begin{aligned}
& \dot{x}_{1}=\dot{y}=x_{2} \\
& \dot{x}_{2}=y^{(2)}=x_{3} \text {. } \\
& \dot{x}_{n-1}=y^{(n-1)}=x_{n}+g_{n}(t, y, y, \ldots, y(n-2)) u \quad\left(\cdots \frac{1}{1} \frac{0}{2}\right. \\
& x_{1}, x_{2}, \ldots, x_{k-1} y^{(n-1)} \text { on tanjf) } \\
& \dot{x}_{n}=y(n)-\frac{d}{d t}\left[g_{2}\left(t, x_{1}, x_{2}, \cdots, x_{n-1}\right)\right] u \\
& -g_{2}\left(t, x_{1}, x_{2}, \ldots, x_{n-1}\right) \dot{u}
\end{aligned}
$$

$$
\begin{aligned}
& -g_{2}\left(t, x_{1}, \ldots, x_{n-1}\right) \dot{u} \\
& =y^{(n)}-\left(\frac{\partial g_{2}}{\partial t}+\frac{\partial g_{2}}{\partial x_{1}} \dot{x}_{1}+\cdots+\frac{\partial g_{2}}{\partial x_{n-1}} \dot{x}_{n-1}\right) u-g_{n}\left(t, x_{1}, \cdots, x_{n-1}\right) \\
& y^{(1)} \text { of (0) } h_{h} \text { exal } \\
& \therefore \dot{x}_{0}=g_{1}\left(t, x_{1}, x_{2}, \cdots, x_{n}+g_{2} u\right)+g_{2}\left(t, x, x_{2}, \cdots, x_{n-1}\right) \dot{u} \\
& -g_{2}\left(t, x_{1}, x_{n-1}\right) \dot{u}-\left(\frac{\partial g_{e}}{\partial t}+\frac{\partial g_{2}}{\partial x_{1}} x_{2}+\cdots+\frac{\partial g_{c}}{\partial x_{n-1}}\left(x_{n}+g_{2} n\right)\right) u
\end{aligned}
$$

$$
\begin{array}{rll}
\dot{x}_{n}= & g_{1}\left(t, x_{1}, \cdots, x_{n}+g_{2}\left(t, x_{1}, x_{2}, x_{n-1}\right) u, u\right) . & y=x_{1} \\
& -\left[\frac{\partial g_{2}}{\partial t}+\frac{\partial g_{2}}{\partial x_{1}} x_{2}+\cdots+\frac{\partial g_{2}}{\partial x_{n-1}}\left(x_{n}+g_{2}\left(t, x_{1}, x_{2}, \cdots, x_{n-1}\right) u\right)\right] u
\end{array}
$$

1.7) 5

$G(S)$: tirear trine-7nvariant

$$
\left[\begin{array}{l}
\dot{x}=A x+B u \\
y=C x+D u \quad \text { \&1 4रc. ank सu } \quad D=0 \tag{3}\\
\therefore \dot{x}=A x+B u-(3) \\
y=C x
\end{array}\right.
$$

(2) 1 穓

$$
\begin{equation*}
u=r-z=r-\psi(t, y)=r-\psi(t, C x) \tag{a}
\end{equation*}
$$

(3) 01 (2) 40

$$
\begin{aligned}
& \dot{x}=A x+B r-B \psi(t, C x) \\
& \therefore {\left[\begin{array}{l}
\dot{x}=A x-B \psi(t, C x)+B r \\
y=C x
\end{array}\right.}
\end{aligned}
$$

