[Exercises 3] Samples

[Problem 3.6] Let $f(t, x)$ be plecewise continouous in t
<Solution> (a)
From given condition

$$
\dot{x}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

The solution $x(t)$ is given by

$$
\begin{aligned}
x(t) & \text { is given by } \\
x(t) & =x_{0}+\int_{6}^{t} f(s, x(s)) d s \quad \mu=K_{1}, \quad L=K_{2} \\
& \Rightarrow\|x(t)\| \leq\left\|x_{n}\right\|+\int_{4}^{t} \mid f(s, z(s))\left\|d s \leq \gamma+\mu\left(t-t_{0}\right)+\int_{\zeta}^{t} L\right\| x(s) \| d s
\end{aligned}
$$

Using Gronwall-Bellman Inequality,

$$
\left.\mid x(t) \| \leq \gamma+\mu\left(t-t_{0}\right)-\gamma-\mu\left(t-t_{4}\right)+\int_{4}^{2} L \gamma+\mu\left(s-t_{4}\right)\right] \exp L(t-s) d s
$$

Integrating the right terms

$$
\begin{aligned}
\mid x(t) \| & \leq \gamma+\mu\left(t-t_{0}\right)-\gamma-\mu\left(t-t_{0}\right)+\gamma \exp \left[L\left(t-t_{0}\right)\right]+\int_{L_{0}}^{1} \mu \exp L(t-s) d s \\
& =\gamma \exp \left[L\left\langle t-t_{0}\right)\right]+\frac{\mu}{L}\left\{\exp \left[L\left(t-t_{0}\right)\right]-1\right\}
\end{aligned}
$$

From the definition,

$$
f(t, x) \leq k_{1}+k_{2}|x| .
$$

Then,

$$
\begin{aligned}
\|f(t, x)\| & \leq\left\|x_{0}\right\|+k_{1}\left(t-t_{0}\right)-\left\|x_{0} \mid-k_{1}\left(t-t_{0}\right)+\right\| x_{0} \| \exp \left[k_{2}\left(t-t_{0}\right)\right]+\int_{1_{2}}^{1} k_{1} \exp \left[k_{2}(t-s)\right) d s \\
& =\left\|x_{0}\right\| \exp \left[k_{2}\left(t-t_{0}\right) \left\lvert\,+\frac{k_{1}}{k_{2}}\left\{\exp \left[\not k_{\left(t-t_{0}\right.}^{K_{2}}\right)\right]-1\right.\right\}
\end{aligned}
$$

(b) Can the solution have a finite escape time?
<Solution>
The finite escape time is used to deacribe the phenomenon that a trajectory escapes to infinity nt n finite time. So, if $x(t)=1 /(t-1)$ then, a finite eacape time $=1$.
Therefore,

$$
x(t) \leq\left\|x_{n}\right\| e^{k_{2}(t-\xi)}+\frac{k_{1}}{k_{2}}\left\{e^{k_{1}(t-4)}-1\right\} .
$$

has no finite escape time when $\left|x_{n}\right|$ has finite value.

[Problem 3.23]

<Solution>
From given condition,

And from the given hint,

$$
g(\sigma)=f(\sigma x), \quad 0 \leq \sigma \leq 1
$$

Then,

$$
g=\frac{\partial f}{\partial x}(\sigma x) \frac{\partial \sigma x}{\partial x}=\frac{\partial f}{\partial x}(\sigma x) x
$$

Therefore,

$$
f(x)=f(x)-f(0)=g(1)-g(0)
$$

and

$$
g(1)-g(0)=\int_{0}^{1} \dot{g}(\sigma) d \sigma=\int_{0}^{1} \frac{\partial f}{\partial x}(\sigma z) d \sigma x
$$

[Problem 3.24]

Let $V: R \times R^{n} \rightarrow R$ be continuously differentiable. Suppose that $V(t, 0)=0$ for all $t \geq 0$ and

$$
V(t, x) \geq c_{1}\left\|\left.x\right|^{2} ;\right\| \frac{\partial V}{\partial x}(t, x\rangle\left\|\leq c_{3}\right\| x \|_{1} \forall(t, x) \in[0, \infty) \times D
$$

where c_{j} and $c_{\text {, }}$ are positive constant and $D \subset R^{*}$ is a convex domain that contains the origin $x=0$.
(n) Show that $V(t, z) \leq \frac{1}{2} c_{4}|x|^{2}$ for all $z \in D$.

Hint: Use the representation $V(t, x)=\int_{0}^{1} \frac{\partial V}{\partial x}(t, \sigma x) d \sigma x$.
<Solution>

$$
\begin{aligned}
V(t, x) & =\int_{0}^{1} \frac{\partial V}{\partial x}(t, \sigma x) d \sigma x \\
& \leq \int_{0}^{3}\left|\frac{\partial V}{\partial x}(t, \sigma x)\right|\|x\| d \sigma \leq \int_{0}^{1} \sigma c_{4}|x|^{3} d \sigma \\
& \leq\left.\frac{1}{2} c_{4}|x|\right|^{\beta}
\end{aligned}
$$

(b) Show that the constants c_{1} and c_{4} must satisfy $2 c_{1} \leq c_{4}$.
<Solution>

$$
\begin{aligned}
& V(t, x) \geq c_{1}\|x\|^{2} \\
& V(t, x) \leq \frac{1}{2} c_{4}\|x\|^{2}
\end{aligned} \quad \Rightarrow c_{1} \leq \frac{1}{2} c_{4}
$$

(c) Show that $W(t, x)=\sqrt{V(t, x)}$ satisfies the Lipschitz condition

$$
\left|W\left(t, x_{2}\right)-W\left(t, x_{1}\right)\right| \leq \frac{c_{4}}{2 \sqrt{c_{1}}}\left\|x_{2}-x_{1}\right\|, \forall t \geq 0, \forall x_{1}, x_{2} \in D
$$

$$
W(t, x)=\int_{0}^{1} \frac{\partial W}{\partial x}(t, \sigma x) d \sigma x
$$

$$
\begin{aligned}
\frac{\partial W}{\partial x} & =\frac{1}{2 \sqrt{V(t, x)}} \frac{\partial V}{\partial x} \\
& \Rightarrow\left|W\left(t, x_{1}\right)-W\left(t, x_{2}\right)\right| \leq \int_{0}\left|\frac{\partial W}{\partial x}\left(t, \sigma x_{1}\right)\left(d \sigma x_{1}-\frac{\partial W}{\partial x}\left(t, \sigma x_{2}\right) d d\right) x_{2}\right| \\
& \leq \int_{0}^{1} \left\lvert\, \frac{1}{2 \sqrt{V\left(t, \sigma x_{1}\right)}} \frac{\partial V\left(t, \sigma x_{1}\right)}{\partial x_{1}}-\frac{1}{2 \sqrt{V\left(t, \sigma x_{1}\right)}} \frac{\partial V\left(t, \sigma x_{2}\right)}{\partial x_{2}}\right.
\end{aligned}
$$

Therefore,

$$
\left.\sqrt{V\left(t, \sigma x_{1}\right.}\right) \geq c_{1} \sigma\left\|x_{1}\right\|,\left\|\frac{\partial V\left(t, \sigma x_{1}\right)}{\partial x_{1}}\right\| \leq c_{4}\left\|x_{1}\right\| \Rightarrow \int_{0}^{1} \frac{c_{4}}{2 \sqrt{c_{1}}}\left\|x_{1}-x_{2}\right\| d \sigma \leq \frac{c_{4}}{2 \sqrt{c_{1}}}\left\|x_{1}-x_{2}\right\|
$$

3.6 Let $f(t, x)$ be piecewise continuous in t, locally Lipschitz in x, and

$$
\|f(t, x)\| \leqslant k_{1}+k_{2}\|x\|,-(1)^{\forall}(t, x) \in\left[t_{0}, \infty\right) \times \mathbb{R}^{n}
$$

(a) Show that the solution of (3.1) satisfies

$$
\|x(t)\| \leqslant\left\|x_{0}\right\| \exp \left[k_{2}\left(t-t_{0}\right)\right]+\frac{k_{1}}{k_{2}}\left\{\exp \left[k_{2}\left(t-t_{v}\right)-1\right]\right\}
$$

for all $t \geq t$. for which the solution exists.

$$
\begin{aligned}
& \dot{x}=f(t, x) \quad x\left(t_{0}\right)=x_{0} \\
& \Rightarrow x(t)=x_{0}+\int_{t_{0}}^{t} f(s, x(s)) d s
\end{aligned}
$$

$$
\|x(t)\| \leqslant\left\|x_{0}\right\|+\int_{t_{n}}^{t}\|f(s, x(s))\| d s
$$

$$
\leqq\left\|x_{0}\right\|+\int_{t_{0}}^{t}\left[k_{1}+k_{2}\|x(s)\|\right] d s
$$

$$
=\left\|\chi_{0}\right\| t \int_{t_{0}}^{t} k_{1} d s+\int_{t_{0}}^{t} k_{2}\|x(s)\| d s
$$

Gronwall-Bellmar's

$$
\begin{aligned}
a \overbrace{}^{2} & =\left\|x_{0}\right\|+k_{1}\left(t-t_{0}\right)+\int_{-0}^{t} k_{2}\|x(s)\| d s \\
& \leqslant\left\|x_{0}\right\|+k_{1}\left(t-t_{0}\right)+\int_{t_{0}}^{t}\left[\left\|x_{0}\right\|+k_{1}\left(s-t_{0}\right)\right] k_{2} \exp \left[\int_{s}^{t} k_{2} d \tau\right] d s \\
& =\left\|x_{0}\right\|+k_{1}\left(t-t_{0}\right)+\int_{t_{0}}^{t}\left[\left\|z_{0}\right\|+k_{1}\left(s-t_{0}\right)\right] k_{2} e^{k_{2}(t-s)} d s-(2)
\end{aligned}
$$

$$
\begin{equation*}
\int_{t_{0}}^{\pi}\left\|x_{0}\right\| k_{2} e^{k_{2}(t-s)} d s+k_{1} \int_{t_{0}}^{t}\left(s-t_{0}\right) k_{2} e^{k_{2}(t-s)} d s \tag{4}
\end{equation*}
$$

(3)
(3) $;\left\|x_{0}\right\| \int_{6}^{t} k_{2} e^{k_{2}(\tau-5)} d s=\left\|x_{0}\right\|\left[-e^{k_{2}(t-5)}\right]_{t_{0}}^{t}$

$$
\begin{aligned}
& =\left\|x_{0}\right\|\left\{e^{k_{2}\left(t-t_{0}\right)}-1\right\} \\
& =\left\|x_{0}\right\| e^{k_{2}\left(t-t_{0}\right)}-\left\|x_{0}\right\| \quad \cdots(t)^{\prime}
\end{aligned}
$$

(4); $k_{1} k_{2} \int_{t_{0}}^{t} s e^{k_{2}(t-s)} d s-k_{1} t=\int_{t_{0}}^{t} k_{2} e^{k_{2}(t-s)} d s$

$$
\begin{aligned}
& =k_{1} k_{2} e^{k_{2} t} \int_{t_{0}}^{t} s e^{-k_{2} s} d s-k_{1} t_{0} e^{k_{2} t} \int_{t_{0}}^{t} k_{2} e^{-k_{2} s} d s \\
& =k_{1} k_{2} e^{k_{2} t}\left[\frac{e^{-k_{1} s}\left(-k_{2} s-1\right)}{k^{2}}\right]^{t}-k_{1} t_{0} e^{k_{2} t}\left[-e^{-k_{2} s}\right]_{t_{0}}^{t}
\end{aligned}
$$

$$
\begin{align*}
&= k_{1} w_{2} e^{k_{2} t} \cdot \frac{1}{k_{2}^{2}}\left(e^{-k_{2} t}\left(-k_{2} t-1\right)-e^{-k_{2} t_{0}}\left(-k_{2} t_{0}-1\right)\right)+k_{1} t_{0} e^{k_{2} t}\left(e^{-k_{2} t}-e^{-k_{2} t_{0}}\right) \\
&= \frac{k_{1}}{k_{2}} e^{k_{2} t} e^{-k_{2} t}\left(-k_{2} t\right)-\frac{k_{1}}{k_{2}} e^{k_{2} t} e^{-k_{2} t}+\frac{k_{1}}{k_{2}} e^{-\frac{k_{2} t}{} e^{-k_{2} t_{0}} k_{2} t_{0}+\frac{k_{1}}{k_{2}} e^{k_{2} t} e^{-k_{2} t_{0}}} \\
& \quad+k_{1} t, e^{k_{2} t} e^{-k_{2} t}-k_{1} t_{0} e^{k_{2} t} e^{-k_{2} t_{0}} \\
&= \frac{k_{1}}{k_{2}} e^{k_{2}\left(t-t_{0}\right)}-\frac{k_{1}}{k_{2}} e^{k_{2}(t-t)}+k_{1}\left(t_{0}-t\right) \\
&=\frac{k_{1}}{k_{2}}\left(e^{k_{2}\left(t-t_{0}\right)}-1\right)-k_{1}\left(t-t_{0}\right) \cdots(t) \tag{4}
\end{align*}
$$

$\|x(t)\| \leqslant\left\|x_{0}\right\|+k_{1}\left(t-t_{0}\right)+\left\|x_{0}\right\| e^{k_{2}\left(t-t_{0}\right)}-\left\|x_{0}\right\|-k_{1}\left(t-t_{0}\right)+\frac{k_{1}}{k_{2}}\left(e^{k_{2}\left(t t_{0}\right)}-1\right)$
$\therefore\|x(t)\| \leq\left\|x_{0}\right\| e^{k_{2}\left(t-t_{0}\right)}+\frac{k_{1}}{k_{2}}\left\{e^{k_{2}\left(t-t_{0}\right)}-1\right\} \quad y t z t_{0}$
(b) Can the solution have a (incite escape time?
finite escape time:- describe the pheomenon that a trajectory escape to

$$
\text { infinite } a=a \text { finite time. }
$$

3.23 Let $f(x)$ be a continuously differentiable function that maps a convex domain $D C \mathbb{R}^{n}$ int p \mathbb{R}^{n}. Suppose D contains the origin $X=0$ and $f(0)=0$. Show that

$$
f(x)=\int_{0}^{1} \frac{\partial f}{\partial x}(\sigma x) d s x \quad \forall x \in 0
$$

$\forall x \in D$. D E convex domain ole?,

$$
\begin{aligned}
& \sigma x \in D, \quad 0 \leqslant \sigma \leqslant 1 \text {, ora, } \\
& g(\sigma)=f(\sigma x) \quad 0 \leq \sigma \leq 1
\end{aligned}
$$

$$
\begin{aligned}
g^{\prime}(\sigma)=\frac{d g(\sigma)}{d \sigma}=\frac{d f(\sigma x)}{d \sigma} & =\frac{\partial f(\sigma x)}{\partial x} \cdot \frac{\partial(\sigma x)}{\partial \sigma} \\
& =\frac{\partial f(\sigma x)}{\partial x} \cdot x
\end{aligned}
$$

$$
\begin{aligned}
& g(1)=f(x) \\
& g(0)=f(0)=0
\end{aligned} \quad \Rightarrow g(1)-g(0)=f(x)-(2)
$$

$$
\begin{aligned}
& \therefore f(x)=\int_{0}^{1} \frac{\partial f(\sigma x)}{\partial x} \cdot x d \sigma
\end{aligned}
$$

3.24 Let $V: \mathbb{R} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable.

Suppose that $V(t, 0)=_{0}$ for all $t \geq 0$ and

$$
\begin{aligned}
& V(t, x) \geq c_{1}\|x\|^{2}-(1) \\
& \left\|\frac{\partial v}{\partial x}(t, x)\right\| \leqslant c_{4}\|x\|-(2) \quad \forall(t, x) \in[0, \infty) \times D
\end{aligned}
$$

Where c_{1} and c_{4} are positive constants and $D C \mathbb{R}^{n}$ is a convex domain that contains the origin $x=0$.
(a) Show that $V(t, x) \leqslant \frac{1}{2} c_{4}|x|^{2}$ for all $x \in D$.

$$
\begin{align*}
& V(t, x)=\int_{0}^{1} \frac{\partial v}{\partial x}(t, \sigma x) d \sigma x \\
& V(t, x) \leq \int_{0}^{1}\left\|\frac{\partial V}{\partial x}(t, \sigma x)\right\|\|x\| d \sigma \tag{2}\\
& \leq \int_{0}^{1} c_{4}\|\sigma x\| \cdot\|x\| d \sigma \\
& \leq \int_{0}^{1} c_{4} \sigma \sigma x\left\|^{2} d \sigma=c_{4}\right\| x \|^{2} \int_{0}^{1} \sigma d \sigma \\
&=c_{4}\|x\|^{2}\left(\frac{1}{2}\right) \\
& \therefore V(t, x) \leq \frac{1}{2} c_{4}\|x\|^{2} \tag{3}
\end{align*}
$$

(b) Show that the constants c_{1} and c_{4} must satisfy $2 c_{1} \leqslant c_{4}$.
(1) 에 의 $8 H_{1} \quad C_{1}\|x\|^{2} \leqslant V(t, x)$
(3) o\| 部 $H, \quad V(t, x) \leqslant \frac{1}{2} c_{4}\|x\|^{2}$

$$
\begin{align*}
& \Rightarrow c_{1}\|x\|^{2} \leq \frac{1}{2} c_{4}\|x\|^{2} \\
&\|x\|^{2} \geq 0 \quad 0 \underline{0}_{2} \\
& c_{1} \leq \frac{1}{2} c_{4} \\
& \therefore \quad 2 c_{1} \leq c_{4} \tag{4}
\end{align*}
$$

(c) Show that $W(t, x)=\sqrt{V(t, x)}$ Satisfies the Lipschitz condition

$$
\left|w\left(t, x_{2}\right)-w\left(t, x_{1}\right)\right| \leq \frac{c_{4}}{2 \sqrt{c_{1}}}\left\|x_{2}-x_{1}\right\| \quad v t \geq 0, \quad v x_{1}, x_{2} \in \mathbb{D}
$$

$$
W(t, x)=\sqrt{V(t, x)}
$$

$$
\begin{aligned}
& \text { (1) } \rightarrow \sqrt{v(t, x)} \geq \sqrt{c_{1}}\|x\|-(1)^{\prime} \\
& \text { (3) } \rightarrow \sqrt{v(t, x)} \leqslant \sqrt{\frac{c_{4}}{2}}\|x\|-(7)^{\prime}
\end{aligned}
$$

 성가굼ㄴㅏㅏ

$$
\begin{aligned}
\left|w\left(t, x_{1}\right)-w(t, 0)\right| & =\left(w\left(t, x_{1}\right)\left|=\sqrt{v\left(t, x_{1}\right)} \quad\right\rangle(3)^{\prime}\right. \\
& \leq \sqrt{\frac{c_{*}}{2}}\left\|x_{1}\right\|
\end{aligned}
$$

$$
\begin{aligned}
\left|w\left(t, x_{2}\right)-w(t, 0)\right| & =\left|w\left(t, x_{2}\right)\right|=\sqrt{v\left(t, x_{2}\right)} \\
& \leq \sqrt{\frac{c_{4}}{2}}\left\|x_{2}\right\|
\end{aligned}
$$

$\rightarrow\left|W\left(t, x_{2}\right)-W\left(t, x_{1}\right)\right|=\left|W\left(t, x_{2}\right)-W(t, 0)+w(t, 0)-w\left(t, x_{1}\right)\right|$

$$
\leq \sqrt{\frac{c_{4}}{2}}\left\|x_{2}\right\|-\sqrt{\frac{c_{4}}{2}}\left\|x_{1}\right\|
$$

$$
=\sqrt{\frac{c_{4}}{2}}\left(\left\|x_{2}\right\|-\left\|x_{1}\right\|\right)
$$

$$
=\sqrt{\frac{c_{4}}{2}}\left\|x_{2}-x_{1}\right\|
$$

(4) 게의훙 $1 \leq \frac{c_{4}}{2 c_{1}} \rightarrow 1 \leq \sqrt{\frac{c_{4}}{2 c_{1}}}$ 이로,

$$
\begin{equation*}
\left|w\left(t, x_{2}\right)-w\left(t, x_{1}\right)\right| \leqslant \frac{c_{4}}{2 \sqrt{c_{1}}}\left\|x_{2}-x_{1}\right\| \tag{5}
\end{equation*}
$$

(2) x_{1} 아 x_{2} 人 tolll $x=0$ 가ㄴㅐㅐㅏㅏN 안을 경우,

Mean value theorem $\frac{0}{2}$ oitentcr. $\quad x_{1}<y<x_{2}$

$$
\begin{aligned}
& \frac{W\left(t, x_{2}\right)-W\left(t, x_{1}\right)}{x_{2}-x_{1}}=\frac{\partial W(t, y)}{\partial x} \\
& w\left(t_{1} x_{2}\right)-w\left(t_{1} x_{1}\right)=\frac{\partial w(t, y)}{\partial x}\left(x_{2}-x_{1}\right) \\
& W(t, x)=\sqrt{V(t, x)} \rightarrow \frac{\partial W(t, x)}{\partial x}=\frac{1}{2 \sqrt{V(t, x)}} \frac{\partial v(t, x)}{\partial x} \\
& \Rightarrow W\left(t_{1}, x_{2}\right)-W\left(t_{1}, x_{1}\right)=\frac{1}{2 \sqrt{V(t, y)}} \frac{\partial v(t, y)}{\partial x}\left(x_{2}-x_{1}\right) \\
& \left|W\left(t_{1} x_{2}\right)-W\left(t_{1} x_{1}\right)\right| \leq \frac{1}{2 \sqrt{c_{1}} \| y \pi} \cdot c_{4}\|y /\|\left\|x_{2}-x_{1}\right\| \\
& =\frac{c_{4}}{2 \sqrt{c_{1}}}-\left\|x_{2}-x_{1}\right\|-(6)
\end{aligned}
$$

$$
\therefore\left|W\left(t, x_{2}\right)-W\left(t, x_{1}\right)\right| \leq \frac{c_{4}}{2 \sqrt{c_{1}}}\left\|x_{2}-x_{1}\right\|
$$

