[Exercises 6] Samples

6.1 Verify that a function in the sector $\left[K_{1}, K_{2}\right]$ can be transformed into a function in the sector $[0, \infty]$ by input feedforward followed by output feedback, as shown in Figure 6.7.

Figure 6.7

$$
\begin{aligned}
& \rightarrow r_{1} \tilde{y}=h(t, u)-K_{1} u \\
& \text { Let } \bar{u}=k u, \quad k=k_{2}-K_{1}, \\
& \therefore \bar{u}=\tilde{u}+\tilde{y} \\
& \text { By } \quad\left[h(t, u)-k_{1} u\right]^{\top}\left[h(t, u)-k_{2} u\right] \leq 0(6,5), \\
& {[]^{\top}[] }=\tilde{y}^{\top}\left[h(t, u)-k_{2} u\right]=\tilde{y}^{\top}\left[h(t, u)-\left(k+k_{1}\right) u\right]=\tilde{y}^{\top}\left[\tilde{y}-k_{u} u\right] \\
&=\tilde{y}^{\top}[\hat{y}-\bar{u}]=\hat{y}^{\top}[-\tilde{u}] \leq 0 \\
& \therefore \tilde{y}^{\top} \tilde{u} \geq 0 .
\end{aligned}
$$

6.2. Consider the system

$$
a \dot{x}=-x+\frac{1}{k} h(x)+u, \quad y=h(x)
$$

where a and k are positive constants and $h \in[0, k]$. Show that the system is passive with $V(x)=a \int_{0}^{x} h(\sigma) d \sigma$ as the storage function.

$$
\begin{aligned}
-\dot{V}=\frac{\partial V}{\partial x} f(x, u) & =\frac{\partial}{\partial x}\left(a \int_{0}^{x} h(\sigma) d \sigma\right) \cdot \frac{1}{a}\left(-x+\frac{1}{k} h(x)+u\right) \\
& =\frac{\partial}{\partial x} \int_{0}^{x} h(\sigma) d \sigma \cdot\left(-x+\frac{1}{k} h(x)+u\right) \\
& =h(x) \cdot\left(-x+\frac{1}{k} h(x)+u\right) \\
& =u h(x)-h(x)\left(x-\frac{1}{k} h(x)\right) \leq u h(x)
\end{aligned}
$$

where $\quad x-\frac{1}{k} h(x) \geq x-\frac{1}{k} \cdot k x=0, \quad \forall x \geqslant 0$.

$$
\begin{array}{r}
\therefore \quad \text { un } \geq \dot{v} \quad \text { If } x \leqslant 0, \quad x-\frac{1}{k} h(x) \leq 0 \quad \&-h(x) \geqslant 0 \\
\quad \quad \quad-h(x)\left(x-\frac{1}{k} h(x)\right) \leq 0
\end{array}
$$

6.4. Consider the system

$$
\dot{x}_{1}=x_{2}, \dot{x}_{2}=-h\left(x_{1}\right)-a x_{2}+u, \quad y=k x_{2}+u
$$

Where $a>0, k>0, h \in\left[\alpha_{1}, \infty\right]$, and $\alpha_{1}>0$. Let $V(x)=k \int_{0}^{x_{1}} h(s) d s+x^{T} P x$, where $p_{11}=a p_{12}, p_{22}=k / 2$, and $0<p_{12}<\min \left\{2 \alpha_{1}, a k / 2\right\}$. Using $V(x)$ as a storage function, show that the system is strictly passive.

$$
\begin{aligned}
& -x^{\top} P_{x}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
P_{11} & p_{12} \\
P_{21} & P_{22}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
p_{11} x_{1}+P_{12} x_{2} & P_{12} x_{1}+p_{22} x_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =P_{11} x_{1}^{2}+P_{12} x_{1} x_{2}+P_{12} x_{1} x_{2}+P_{22} x_{2}^{2} \\
& \dot{v}=\frac{\partial}{\partial x_{1}} v \cdot f_{1}+\frac{\partial}{\partial x_{2}} v \cdot f_{2}=\left(K \cdot h\left(x_{1}\right)+2 p_{11} x_{1}+2 p_{2} x_{2}\right) x_{2}+\left(2 p_{12} x_{1}+2 p_{22} x_{2}\right) \dot{x}_{2} \\
& =k \cdot h\left(x_{1}\right) x_{2}+2 P_{11} x_{1} x_{2}+2 P_{12} x_{2}^{2}-2 p_{12} x_{1} h\left(x_{1}\right)-2 p_{22} x_{2} \cdot h\left(x_{1}\right)-2 a p_{12} x_{1} x_{2} \\
& -2 a p_{2} x_{2}^{2}+2 u p_{1} x_{1}+\underset{\approx 2}{2} p_{2} x_{2} \\
& =k \cdot h\left(x_{1}\right) x_{2}+2 a p_{12} x_{1} x_{2}+2 p_{12} x_{2}^{2}-2 p_{12} x_{1} h\left(x_{1}\right)-k x_{2} h\left(x_{1}\right) \\
& -2 a p_{12} x_{1} x_{2}-a \underset{\sim}{k} x_{2}^{2}+2 u p_{12} x_{1}+u \underset{\sim}{k} x_{2} \quad\left(\because p_{11}=a p_{12}, \quad p_{22}=\frac{k}{2}\right) \\
& =2 p_{12}\left(u-h\left(x_{1}\right)\right) x_{1}+\left(2 p_{1}-a k\right) x_{2}^{2}+u k x_{2} \\
& \text { since. } u y=u k x_{2}+u^{2}, \quad u k x_{2}=u y-u^{2} \\
& \dot{v}=u y-u^{2}+2 p_{12}\left(u-h\left(x_{1}\right)\right) x_{1}+\left(2 p_{12}-a k\right) x_{2}^{2} \\
& \text { where, } \quad\left(2 p_{12}-a k\right) x_{2}^{2} \leq 0^{\prime}: \quad\left(\because P_{12}<\min \left(2 x_{1}, \frac{a k}{2}\right) \quad .\binom{\left(2 p_{2}-a k\right) x_{2}^{2}=0}{\text { when, } x_{2}=0 .}\right. \\
& \dot{v} \leq u y-n^{2}+2 p_{12}\left(n-n\left(x_{1}\right)\right) x_{1}=u y-u^{2}+2 p_{12} u x_{1}-2 p_{12} h\left(x_{1}\right) x_{1} \\
& =u y-\left(u-p_{12} x_{1}^{-}\right)^{2}+\left(p_{12} x_{1}\right)^{2}-2 p_{12} h\left(x_{1}\right) x_{1} \\
& \leq u_{1}-p_{12} x_{1}\left(2 h\left(x_{1}\right)-p_{12} x_{1}\right) \leq^{+}\left(p_{12}-2 \alpha_{1}\right) p_{12} x_{1}^{2} \\
& \text { If } \left.<x_{1}<0 \text { (where, } 2 h\left(x_{1}\right)-p_{12} x_{1}>2 h_{1}\left(x_{1}\right)-2 \alpha_{1} x_{1} \geq 2 \alpha_{1} x_{1}-2 \alpha_{1} x_{1}=0\right) \\
& \therefore \dot{v} \leq u y-p_{12} x_{1}\left(2 h\left(x_{1}\right)-p_{12} x_{1}\right) \leq u y \quad \therefore u^{\top} y \geq \dot{V}+\psi(x) \text {. for some positive } \\
& \text { par, } x_{1}=0 \text { op, } \dot{v}=u y \text {. } \\
& \text { So this } 5 y \text { scot is strictly passive. }
\end{aligned}
$$

6.10. Consider the equations of motion of an m-link robot, described in Exercise 1.4. Assume that $P(q)$ is a positive definite function of q and $g(q)=0$ has an isolated root at $q=0$.
(a) Using the total energy $V=\frac{1}{2} \dot{q}^{T} M(q) \dot{q}+P(q)$ as a storage function, show that the map from u to \dot{q} is passive.

- 운응방Nㅣㄱㄹㅜ
$M(q) \ddot{q}+c(q . \dot{q}) \dot{q}+p \dot{q}+g(q)=u, \quad y=\dot{q}$

$$
\begin{aligned}
\dot{V} & =\dot{q}^{\top} M(q) \dot{q}+\frac{1}{2} \dot{q}^{\top} \dot{M} q+\frac{\partial P}{\partial q} \dot{q} \\
& =\dot{q}^{\top}[u-c(q, \dot{q}) \dot{q}-D \dot{q}-g(q)]+\frac{1}{2} \dot{q}^{\top} \dot{M} \dot{q}+g^{\top}(q) \dot{q} \\
& =y^{\top} u-y^{\top} D y \leq y^{\top} u, \quad(\because \dot{M}-2 C \text { is skew-symmetric matrix })
\end{aligned}
$$

\therefore This system is passive.
(b) With $u=-K_{d} \dot{q}+v$, where K_{d} is positive diagonal constant matrix, show that the map from v to \dot{q} is output strictly passive.

$$
\text { 0) } \begin{aligned}
x_{i}^{\top} \cdot \dot{V} \leqslant y^{\top} u & =y^{\top}\left(-K_{d} y+v\right) \\
& \left.=y^{\top} v-y^{\top} k_{d} y \Rightarrow \dot{V}^{\top} y \geqslant \dot{v}+y^{\top} \frac{k_{d} y}{>0}\right) \\
y_{d}^{\top} v & =y^{\top} u+y^{\top} k d y>g^{\top} u .
\end{aligned}
$$

$$
\therefore \quad \dot{U} \leq y^{\top} v . \quad 0 \mid \underline{x} \varepsilon_{1}
$$

strictly passive.
Th

(c) Show that $u=-K_{d} \dot{q}$, where K_{d} is a positive diagonal constant matrix, makes the origin ($q=0, \dot{q}=0$) asymptotically stable. Under what additional conditions will it globally asymptotically stable?

> If $k=0$,
> $\dot{V} \leqslant-y^{\top} K_{d} \dot{y}=-\dot{q}^{\top} K_{d} \dot{q} \leqslant 0$.
> 三: identically $\quad(e x) g(t) \equiv 0$ means $q(t)$ is zero for

$$
\begin{aligned}
& \text {.. } o(t) \equiv 0 \text { oㅣㄴ }
\end{aligned}
$$

파 2 ky , the origin is asymptotically stable.
2212. $q=0$ of unique rat of $g(q)=0$ of, $P(q)$ is radially
unbounded olithe GAS ort.
\#6.1. Rector $\left[k_{1}, k_{2}\right] \xrightarrow{\text { into }}$ sector $[0, \infty]$
by Tupht feedward followed by output feedback,

$\Rightarrow u, a, y, \hat{y} \in \mathbb{R}^{p}$ (ire. same dimension)
from the shown structure,

$$
u=k^{-1}(\tilde{a}+\tilde{y}), \quad \tilde{y}=y-k_{1} u .
$$

for sector [k, K.J

$$
y \uparrow k_{l / k_{1}} \quad\left[y-k_{1} u\right]^{\top}\left[y-k_{2} u\right] \leq 0
$$

for this modified system,

$$
\begin{aligned}
\tilde{u}^{\top} \tilde{y} & =(k u-\tilde{y})^{\top}\left(y-k_{1} u\right)=\left(k u+k_{1} u-y\right)^{\top}\left(y-k_{1} u\right) \\
& =\left(y-k_{1} u\right)^{\top}\left(\frac{k u-k}{\left.=k_{1} u-y\right) \quad\left(\because k_{2}-k_{1}\right.} a^{\top} \tilde{y} \in \text { scalar }\right) \\
& =\left(y-k_{1} u\right)^{\top}\left(\frac{2 k_{1} u+k}{}+k_{2} u-y\right)=-\left(y-k_{1} u\right)^{\top}\left(y-k_{2} u-2 k_{1} u\right) \\
& =\underbrace{-\left(y-k_{1} u\right)^{\top}\left(y-k_{2} u\right)}+\underbrace{2\left(y-k_{1} u\right)^{\top}(k, u)}
\end{aligned}
$$

i) fit term: $-\left(y-k_{1} u\right)^{\top}(y-k, u) \geq 0 \quad\left(\because\right.$ sector $\left.\left[k_{1}, k\right]\right)$
ii) $2^{\text {nd }}$ term: $2(y-k, u)^{\top}(k, u) \geq 0$

Since. for $1^{\text {st }}$ quadrant: $y-k_{i} u \geq 0$, $k_{1} u \geq 0$
for $3^{\text {nd }}$ quadrant: $y-k_{1} u \leq 0, k_{2} u \leq 0$
So, $\tilde{a}^{\top} \hat{y} \geq 0 \Rightarrow$ this means this modified system is passive lie. In the section $[0, \infty]$
\＃6iz．Qustoler the system．

$$
a \dot{x}=-x+\frac{1}{k} h(x)+u . \quad y=h(x)
$$

a．k＞0．\＆constant．$h \in[0, k]$
Show the system is passcue with $V(x)=a . \int_{0}^{x} h(\sigma) d \sigma$ as the storage function
$\Rightarrow V(x)$ ：storage fin．$\Rightarrow V(x) \geq 0$

$$
\begin{aligned}
\dot{V}=\frac{\partial V}{\partial x} \cdot \dot{x} & =a \cdot h(x) \dot{x} \\
& =h(x) \cdot\left(-x+\frac{1}{k} h(x)+u\right) \\
& =h(x) u+\frac{1}{k} h(x)^{2}-h(x) x .
\end{aligned}
$$

from $h \in[0, k]$ ，
For 位，quadrant，$\frac{1}{k} h(x)^{2}-h(x) x \leq \frac{h(x)}{\frac{2}{2}}(K x)-h(x) x=0$
for sid quadrant，$\frac{1}{k} h(x)^{2}-h(x) x \leq \frac{1}{k}(k x)^{2}-(k x) x=0$

$$
\therefore \vec{i} \leq h(x) u \Rightarrow \text { "passive" }
$$

\#6.4.

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-h\left(x_{1}\right)-a x_{2}+u . \quad y=k x_{2}+u
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
a>0, k>0 \quad h \in\left[\alpha_{1}, \infty\right] . \quad \alpha_{1}>0 . \\
U(x)=k \cdot \int_{0}^{x_{1}} h\left(0 d r+x^{\top} p_{x} .\right. \\
\left(p_{11}=a \cdot p_{12}, \quad p_{د_{2}}=k / 2, \quad 0<p_{12}<\left.\min \right|^{3} 2 \alpha_{1}, \frac{a k}{2}\right\}
\end{array}\right.
\end{aligned}
$$

show the system is strictly passive

$$
\begin{aligned}
& \Rightarrow \quad \dot{v}=\frac{\partial V}{\partial x} \cdot \dot{x}=k \cdot h(x) \cdot \dot{x}_{1}+2 x^{\top} P \dot{x} \\
& =k \cdot h\left(x_{1}\right) x_{2}+2\left[x_{1} x_{2}\right]\left[\begin{array}{ll}
p_{11} & P_{12} \\
p_{21} & P_{22}
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x_{2}}
\end{array}\right] \\
& =k \cdot h\left(x_{1}\right) x_{2}+2\left(a \cdot p_{12} x_{1}+p_{2} \cdot x_{2}\right) \dot{x}_{1}+2\left(p_{12} x_{1}+\frac{k}{2} x_{2}\right) \dot{x}_{2} \\
& =k h\left(x_{1}\right) x_{2}+2\left(a \cdot p_{12} x_{1}+p_{2} x_{2}\right) x_{2}+2\left(p_{12} x_{1}+\frac{k}{2} x_{2}\right)\left(-h\left(x_{1}\right)-a x_{2}+u\right) \\
& =k h_{1} \sqrt{x_{2}}+2\left(a p_{12} \vec{x}_{1} x_{2}+p_{12} x_{2}^{2}\right)+2 p_{12} x_{1}\left(-h\left(x_{1}\right)-\not x^{2}+u\right) \\
& +k x_{2}\left(-h\left(x_{1}\right)-a x_{2}+u\right) \\
& =\left(2 p_{12}-a k\right) x_{2}^{2}-2 p_{12} h\left(x_{1}\right) x_{1}+2 p_{12} x_{1} u+k x_{2} u \text {. } \\
& u y-\dot{v}=u \cdot\left(x_{2}+u\right)-\left(2 p_{12}-a k\right) x_{2}^{2}+2 p_{12} h\left(x_{1}\right) x_{1}-2 p_{12} x_{1} u-k x_{2} u \\
& =u^{2}-\left(2 p_{2}-a t\right) x_{2}^{2}+2 p_{2} x_{1}\left(h\left(x_{1}\right)-u\right)
\end{aligned}
$$

for $h \in\left[\alpha_{1}, \infty\right], \quad x_{1}\left(h\left(x_{1}\right)-\alpha_{1} x_{1}\right) \geq 0$

$$
4 y-\dot{v} \geqslant u^{2}-\left(2 p_{12}-a k\right) x_{2}^{2}+2 p_{12} \alpha_{1} \cdot x_{1}^{2}-2 p_{12} x_{1} u .
$$

Sure or $p_{12}<\min \left\{2 \alpha_{1}, \frac{a k}{2}\right\}$.
$u y-\dot{V}>u^{2}+2 p_{12} \alpha_{1} x_{1}^{2}-2 p_{12} x_{1} u$.

$$
=\left(4-p_{22} x_{1}\right)^{2}+p_{k^{2}}\left(2 \alpha_{1}-p_{12}\right) x_{1}^{2}
$$

\#6.4. (contioned)

$$
\begin{aligned}
& u y-i>\left(u-p_{12} x_{1}\right)^{2}+p_{12}\left(2 \alpha_{1}-p_{12}\right) x_{1}^{2} \\
& \text { if } \quad 2 \alpha_{1}<\frac{a k}{2}, \quad 0<p_{12}<2 \alpha_{1} \\
& \therefore \quad u y-V>\left(u-p_{12} x_{1}\right)^{2}>0
\end{aligned}
$$

if $2 \alpha_{1}>\frac{a k}{2} . \quad 0<p_{12}<\frac{a k}{2}<2 \alpha_{1}$

$$
\therefore u y-\dot{v}>\left(u-p_{2} x_{1}\right)^{2}>0 \quad\left(u_{y}>\dot{v}+()^{2}\right)
$$

\Rightarrow " ftrictly Parive"
\#6,10 m-lint robot.

$$
\begin{aligned}
& M(q) q \dot{q}+C(q, \dot{q}) q+D q+g(q)=u ., \quad q \cdot u \in \mathbb{R}^{m} \\
& M(q)=M^{\top}(q)>0, D \geq 0 \\
& (\dot{H}-2 C)^{\top}=-(\dot{M}-2 C) \sim \text { rkew-symmetric mex. } \\
& g(q)=\left[\frac{2 P(q)}{\partial q}\right]^{\top}, P(q) \sim P . D . \quad g(q)=0: \text { sot, } \quad,=0
\end{aligned}
$$

(a) $V=\frac{1}{2} \dot{q}^{\top} M(q) \dot{q}+P(q)$, show the map from u to \dot{q} is passive.
\Rightarrow let $q=x_{1}, \dot{q}=x_{2}$
then $\dot{x}_{1}=x_{2}$

$$
\Rightarrow x_{2}^{\top} u=\dot{v}+x_{2}^{\top} D x_{2} \geq \dot{v} \quad \therefore \frac{u \text { to } x_{2}}{\text { panstue! }}
$$

$$
\begin{aligned}
& \dot{x}=M^{-1}\left(x_{1}\right)\left\{u-C\left(x_{1}, x_{2}\right) x_{2}+D \cdot x_{2}-g\left(x_{1}\right)\right\}, V=\frac{1}{2} x_{2}^{\top} M\left(x_{1}\right) x_{2}+P\left(x_{1}\right) \\
& y=x_{2} \\
& \hat{V}=\frac{\partial V}{\partial x} \cdot \dot{x}=\frac{\partial V}{\partial x_{1}} \dot{x}_{1}+\frac{\partial V}{\partial x^{\prime}} \dot{\dot{x}_{2}}=\frac{1}{2} x_{2}^{T} r \dot{M} \dot{x}_{2}+\frac{\partial P\left(x_{1}\right)}{\partial x_{1}} \cdot \dot{x}_{1}+x_{2}^{\top} \cdot M \cdot \dot{x}_{2} \\
& =\frac{1}{2} x_{2}^{\top} \dot{M} x_{2}+g^{\top}\left(x_{1}\right) x_{2}+x_{2}^{\top} M^{\top} \cdot\left(x_{1}^{-X}\left(u-C \cdot\left(x_{1} x_{2}\right) x_{2}+D x_{2}+y\left(x_{1}\right)\right)\right) \\
& =\frac{1}{2} x_{2}^{\top} \dot{H} x_{2}+g^{\top}\left(x_{1}\right) x_{2}+x_{2}^{\top} u-x_{2}^{\top} C\left(x_{1}, x_{2}\right) x_{2}-x_{2}^{\top} D x_{2}-x_{2}^{\top} g\left(x_{1}\right) \\
& =\frac{1}{2} x_{2}^{\top}\left(\hat{M}_{1}-2 c\right) x_{2}+x_{2}^{\top} U-x_{2}^{\top} D x_{2} \\
& \text { if } \quad \dot{H}-2 C=A . \quad A^{T}=-A \\
& \therefore\left(x_{2}^{\top} A x_{2}\right)^{T}=-x_{2}^{\top} A x_{2}=x_{2}^{\top} A x_{2} \text {. (since. } x_{1}^{\top} A x_{2} \in \mathbb{R} \text {) } \\
& \therefore \quad x_{2}^{\top} A x_{2}=x_{2}^{\top}(M \bar{M}-2 C) x_{2}=0 \\
& \therefore \quad \dot{V}=x_{2}^{\top} u-x_{2}^{\top} p x_{2}
\end{aligned}
$$

*6. 10. (continued)
cb) $u=-k_{d . j}+v$. kd : portive diagonal constant m te show that the mop from v to \dot{q} is output strictly passive

$$
\begin{aligned}
& \Rightarrow \quad \dot{V}=x_{2}^{\top} u-x_{2}^{\top} D x_{2} \\
&=x_{2}^{\top}\left(-k_{d} \cdot x_{2}+v\right)-x_{2}^{\top} D x_{2} \\
&=x_{2}^{\top} v-x_{2}^{\top}\left(k_{d}+D\right) x_{2} . \\
& x_{2}^{\top} v-\dot{v}=x_{2}^{\top}\left(k_{d}+D\right) x_{2}>0 \quad\left(\begin{array}{l}
\forall x_{2} \neq 0 \\
\text { since } k_{d}+b: \\
\therefore \text { positive } \\
\text { definite }
\end{array}\right) \\
& \therefore \text { map from } v \text { to } x_{2}(=y) \quad
\end{aligned}
$$

\sim output strictly passive!
(c) $u=-k$ d. \dot{q} makes the origin $(q=0, \dot{q}=0)$ asymptotically stable.
what conditions for $G, A . S$

$$
\begin{aligned}
\Rightarrow & \dot{b}
\end{aligned}=x_{2}^{\top} u-x_{2}^{\top} D x_{1}=x_{2}^{\top}\left(-k_{d} \cdot \dot{x}_{2}\right)-x_{2}^{\top} D x_{2} .
$$

$$
x_{1}=0
$$

$\therefore \operatorname{OHj}\left(\equiv\left(q=0, q^{\circ}=0\right)\right) \sim$ Asymptotically Table
For G. A, S.
$V:$ rodidly unbounded, so $M(q), P(q)$ have to be unbounded!!

