[Exercises 7] Samples

7. 1 Using the circle criterion, study absolute stability for each of the scalar transfer functions.

In each case, find a sector $[\alpha, \beta]$ for which the system is absolutely stable.
(1) $G(s)=\frac{s}{s^{2}-s+1}$
$G(s)$ or polas : $\quad s^{2}-s+1=0 \rightarrow s=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1}{2}+\delta \frac{\sqrt{3}}{2}$
$\Rightarrow G(s)$ 가 Unstable poles, $\frac{2}{7}$ Riaht Half plane on pole $\frac{7 x H}{}$

$z(s)=\frac{1+\beta G(s)}{1+\alpha G(s)}$
$G(s)$ 가 unstable pole $\frac{0}{2} 27 H 7$ 기 (xHNㅠㄴOI, Nyquist plot $\frac{2}{2}$ disk $D(\alpha, \beta) \frac{2}{2}$ counterclock wise Hf_{5}

 O12ト고할수앙다.

\therefore the system is absolutely stable for the sector $\left[\frac{1}{1-\varepsilon_{1}}, \frac{1}{\varepsilon_{2}}\right]$

7．7 Repeat Exercise 7.1 using Popor criterion．
7．1．（1）$G(s)=\frac{s}{s^{2}-s+1}$

For $\$ 150$ case，

$$
z(s)=\frac{1}{k}+(1+s \gamma) G(s) \text { it strict positive real os } \alpha / \text { test } \bar{\delta} \text { ter. }
$$

（1）G（s）7t Hurwitz 亏े Hopstct
（2）$z(j \omega)+z^{T}(-j \omega)>0 \rightarrow \frac{1}{k}+\operatorname{Re}[G(j \omega)]-\gamma \omega I_{m}[G(j \omega)]>0 \quad \forall \omega$

（1）condition：$G(S)$ er poles：$S^{2}-S+1=0$
 コ24Oを loop transformation $\%$ tct．
\Rightarrow transformed transfer function $T(s)=\frac{G(s)}{1+\alpha G(s)}=\frac{s}{s^{2}+(\alpha-1) s+1} \quad[0, \beta-\alpha]$

$$
\alpha>1 \text { ol여, } T(s) \frac{\varepsilon}{2} \text { Hurwitz } \frac{1}{o}+c t, \quad k=\beta-\alpha
$$

$$
\alpha=1.10_{2}^{1} \pi / 421 \text { popou plot olct }
$$

$$
T(s)=\frac{s}{s^{2}+0.1 s+1}
$$

$$
T(j \omega)=\frac{j \omega}{(j \omega)^{2}+0.1(j \omega)+1}=\frac{j\left(\omega-\omega^{3}\right)+0.1 \omega^{2}}{\left(1-\omega^{2}\right)^{2}+0.01 \omega^{2}}
$$

$$
\begin{gathered}
\alpha=z \text { 욜(tHel Popou plot 으 아HHㅏ 같다 } \\
T(s)=\frac{1}{s^{2}+s+1} \\
T\left(j(w)=\frac{j\left(w-w^{3}\right)+w^{2}}{\left(1-w^{2}\right)^{2}+w^{2}}\right.
\end{gathered}
$$

($\alpha=1.1$ 율때, $\alpha=2$ 열패 무T $\quad-\frac{1}{k}=0$ 을 $k=\infty$

$1 \geq 0$ of 채웅단.

\therefore (1), (2) (3) condition 모 ᄃ 만ㅎ한ㄹ $Z(S) \frac{L}{\tau} S P R$.
\Rightarrow the system is absolutely stable for the sector $[0, k]$,
where k is arbitrarily large.
\Rightarrow the origin system is absolutely stable for the sector $[1.1, \beta]$ where β can be arbitrarily large.

(sector $[2, \beta]$ 븐 $[1,1, \beta]$ 가 $[-1 \exists \geq 2$)
7.10 For each odd nonlinearity $\psi(y)$ on the following list, verify the given expression of the describing function $\Psi(a)$:
(7) $\varphi(y)=$ Figure $7.24(a) \quad \Phi(a)=k+\frac{4 A}{\pi a}$

describing function

$$
\begin{aligned}
\Psi(a) & =\frac{2}{\pi a} \int_{0}^{\pi} \psi(a \sin \theta) \sin \theta d \theta \\
& =\frac{2}{\pi a} \int_{0}^{\pi}\{k a \sin \theta+A \operatorname{sign}(a \sin \theta)\} \sin \theta d \theta \\
& =\frac{2}{\pi a} \int_{0}^{\pi}\left(k a \sin ^{2} \theta+A \sin \theta\right) d \theta \quad \text { For } 0 \leq \theta \leq \pi, \sin \theta \geqslant 0 . \\
& =\frac{2}{\pi a} \int_{0}^{\pi}\left\{k a\left(\frac{1-\cos 2 \theta}{2}\right)+A \sin \theta\right\} d \theta+a \cdot 4, n \theta(\because a \geqslant 0) \\
& =\frac{2}{\pi a}\left[k a \frac{\theta}{2}-k a \frac{\sin 2 \theta}{4}-A \cos \theta\right]_{0}^{\pi}(\cdot) \leq \operatorname{sinn}(\cdot) \\
& =\frac{2}{\pi a}\left(k a \frac{\pi}{2}+A+A\right)=\frac{2}{\pi a} \cdot \frac{k a \pi}{2}+\frac{2}{\pi a} \cdot 2 A \\
& =k+\frac{4 A}{\pi a} \\
\therefore \Psi(a) & =k+\frac{4 A}{\pi a}
\end{aligned}
$$

7. Il Using the describing function method, investigate the existence of periodic solutions and the possible frequency and amplitude of oscillation in the feedback connection of Figure 7.1 for each of the following cases:
(6) $G(s)=5(5+0,25) / s^{2}(5+2)^{2}$, and ψ is nonlinearity of Exercise 7.10 (3) with $A=1$ and $K=2$.
Exercise 7.10 (3) describing function $\Psi(a)=k+\frac{4 A}{\pi a}$

$$
\Rightarrow \Psi(a)=2+\frac{4}{\pi a}
$$

$$
G(s)=\frac{5(s+0,25)}{s^{2}(s+2)^{2}}
$$

$$
G(j \omega)=\frac{5(j \omega+0,25)}{(j \omega)^{2}(j \omega+2)^{2}}=\frac{5(j \omega+0,25)}{-\omega^{2}\left(-\omega^{2}+4 j \omega+4\right)}
$$

$$
=\frac{5(j \omega+0.25)\left(\omega^{2}-4+4 j \omega\right)}{\omega^{2}\left(\omega^{2}-4 j \omega-4\right)\left(\omega^{2}-4+4 j \omega\right)}
$$

$$
=\frac{1.25 \omega^{2}-5-20 \omega^{2}+5 j \omega^{2}-20 j \omega+5 j \omega}{\omega^{2}\left\{\left(\omega^{2}-4\right)^{2}+16 \omega^{2}\right\}}
$$

$$
=\frac{-18.75 \omega^{2}-5+5 j \omega\left(\omega^{2}-3\right)}{\omega^{2}\left\{\left(\omega^{2}-4\right)^{2}+16 \omega^{2}\right\}}
$$

$$
=\frac{-18.75 \omega^{2}-5+55 \omega\left(\omega^{2}-3\right)}{\omega^{2}\left(\omega^{2}+4\right)^{2}}
$$

$$
\text { (1) } \operatorname{Im}[G(j \omega)]=\frac{5 \omega\left(\omega^{2}-3\right)}{\omega^{2}\left(\omega^{2}+4\right)^{2}}=0 \Rightarrow \omega=\sqrt{3} \mathrm{rad} / \mathrm{s}
$$

$$
\operatorname{Re}[G(j \omega)]=\frac{-\left(8.75 \omega^{2}-5\right.}{\omega^{2}\left(\omega^{2}+4\right)^{2}}
$$

$$
\text { (2) } \operatorname{Re}[G(j \omega)] \cdot \Psi(a)+1=0 \quad \omega=\sqrt{3}
$$

$$
\begin{aligned}
& \frac{-18.75 .3-5}{3(3+4)^{2}} \cdot\left(2+\frac{4}{\pi a}\right)+1=0 \\
& \frac{-61.25}{147}\left(2+\frac{4}{\pi a}\right)+1=0 \\
& 2+\frac{4}{\pi a}=\frac{147}{61.25}=2.4 \\
& \frac{4}{\pi a}=0.4 \Rightarrow a=\frac{10}{\pi}
\end{aligned}
$$

\therefore the solution exists with frequency $\sqrt{3} \mathrm{rad} / \mathrm{s}$ and amplitude $\frac{10}{\pi}$ may

SEOUL NATIONAL UNIVERSITY
SAN 56-1, SILLIM-DONG, GWANAK-GU, SEOUL 151-742, KOREA.
1.1 (1) (a) Grele Criterion. $=\frac{s}{s^{2}-s+1}=\frac{s}{\left(s-\frac{1}{2}+\frac{\sqrt{3}}{2} j^{\prime}\right)\left(s-\frac{1}{2}-\frac{\sqrt{3}}{2} j\right)}$
pole: $\frac{1}{2} \pm \frac{\sqrt{3}}{2} j \Rightarrow$ RHPOM pole zan.

$$
\Rightarrow \quad 0<\alpha<\beta
$$

$G(s) 9$ unstable pole $\rightarrow 2 M$
$\Rightarrow G(s)$ - Nygulst plot of $-\frac{1}{d} \frac{c}{2}$
 and Disk $(\alpha, \beta)\left(-\frac{1}{\alpha},-\frac{1}{\beta} \frac{0}{2} \quad 2 \frac{2}{6}-1\right.$

Nyguist plot if plual phorof shct.
칠 zare G(S)- Nyoust plot ol
 -1 ~ 0 Arad $\frac{c}{2}$ arir , unstable pole al दbiz Nyquist plot ol - $\frac{1}{2} \frac{0}{2}$ 占なhral Elch.

$$
\begin{aligned}
& \Rightarrow \quad-1<-\frac{1}{2}<0 \\
& \Rightarrow \alpha>1 \quad[\because \alpha>0 \text { of } 2200
\end{aligned}
$$

G ir Hurwitz o lr OL 2 Dz)
 반ㄱㄷㅁ 0.5 웅ㅇ(표 ($\left(\frac{2}{7},[\alpha, \beta]=[1 \infty]\right)$,

conerally, $\left[1+\varepsilon_{1}, 1 / \varepsilon_{2}\right]$ for suffrient, small $\varepsilon_{1}, \varepsilon_{2}>0$

〈 $\mathrm{r}=0.5$ ，중심（ $-0.5,0$ ）인 원을 그렸을 매〉

〈반지픔이 0.5 인 원（붉은 것）이 Nyquist plot（파란색）밖으로 나감〉

< $\mathrm{r}=0.495$, 중심 $(-0.5,0)$ 인 원을 그렸을 때>

<r=0.4, 중심 $(-0.5,0)$ 인 원을 그렸을 때〉
（b）use Popou criterion．

$$
\left.\begin{array}{rl}
G(s)= & \frac{s}{s^{2}-s+1} \rightarrow A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right] B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
\dot{x}=A x+B u \\
y=C x
\end{array}\right) \Rightarrow \begin{aligned}
& \dot{x}_{1}=x_{2}+u \quad \\
& \dot{x}_{2}=-x_{1}+x_{2}, \quad y=x_{1}
\end{aligned}
$$

$G(S)$ if Hurwitz if of $4 x 1$ 区h是原 sector condition

 feed back $u=-\gamma(y)=-(h(y)-\alpha y)(\alpha>0) \frac{\pi}{2}$ $01 \frac{\beta}{3} \delta 40 k$ scc．and $k \in[0, k] \quad(k=\beta-\alpha)$ ．

$$
\dot{x}=\underbrace{\left(\begin{array}{cc}
-\alpha & 1 \\
-1 & 0
\end{array}\right)}_{\text {qch. }} \underset{A}{ }) \underset{A}{ }\binom{1}{0} u, \quad y=\left(\begin{array}{ll}
1 & 0
\end{array}\right) x
$$

$\tilde{A}=1$ elgen value $\Rightarrow S^{2}+(\alpha-1) S+1=0 \quad \therefore \quad \sigma Z$ ．
 ath $\alpha=1.05$ E 225 Popor flot $\frac{a}{2}$ 2a1pay入울가 $\frac{1}{8}(r>0)$ ols x 줄运이 $-\frac{1}{\beta}(\beta>0)$ il Popor plotor सुका दूर

 $\beta<\infty$ of rif sic absolutely stableslor踶 \leqslant 外的

$$
\therefore h(y) \in[1.05, \beta] \quad(\beta<\infty) \text { olpy } x \frac{1}{0} \text {, }
$$

general expressim？o．k．
$\rightarrow[\alpha, \beta]$ for $\alpha>1$ and
B，arbitrarily large

7．7 Use Popov Criterion

＜at $a=5$ 〉

〈at $a=5$ 〉

SEOUL NATIONAL UNIVERSITY
1.10(3) $\psi(y): \neq \lg 1.24(a) \quad$ show. 正 $(a)=k+\frac{4 A}{\pi a}$.

$$
\bar{\Psi}(a)=\frac{2}{\pi a} \int_{0}^{\pi} \psi(a \sin \theta) \sin \theta d \theta
$$

$$
=\frac{4}{\pi a} \int_{0}^{\frac{\pi}{2}} \psi(a \sin \theta) \sin \theta d \theta
$$

$$
=\frac{4}{\pi a} \int_{0}^{\frac{\pi}{2}}(A+a k \sin \theta) \sin \theta d \theta
$$

$$
=\left.\frac{4}{\pi a}\left[-A \cos \theta+\frac{a k}{2} x-\frac{a k}{2} \cos x \sin x\right]\right|_{0} ^{\frac{\pi}{2}}
$$

$$
=\frac{4 A}{\pi a}+K
$$

1. 11 (6)

$$
\begin{aligned}
& \text { (6) } G(s)=\frac{55(s+0.25)}{s^{2}(s+2)^{2}}, \psi(y): F(g 7.24(a), \\
& A=1, \quad k=2 \\
& G(j \omega)=\frac{5\left(j \omega+\frac{1}{4}\right)}{-\omega^{2}(j \omega+2)^{2}}=\frac{-5\left(1+\frac{(5}{4} \omega^{2}\right)+5 j \omega\left(\omega^{2}-3\right)}{\omega^{2}\left(4+\omega^{2}\right)^{2}} \\
& \operatorname{Ims}[G(\omega \omega)]=0 \text { at } \omega=\sqrt{3} . \\
& 1+\operatorname{An} \operatorname{Re}[G(j \omega)]=-\frac{5}{12} \\
& 1+\mathcal{R}(a) \operatorname{Re}[G(j \omega)]=0=1-\frac{5}{12}\left(\frac{4}{\pi a}+2\right) \\
& \Rightarrow a=\frac{10}{\pi}
\end{aligned}
$$

amplitude of to/ π aI frequency if $\sqrt{3}$ zn 201

7.11(6)

〈G(s)의 Nyquist plot>

<Nyquist plot이 $w=1.76$ 근처에서 실수축과 만나는 것을 확인〉

