## [Exercises 8] Samples

[Problem 8.4] Reconsider Example 8.1 with $a=0$. Show that the origin is stable.
Consider the system

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{2}+b x_{1} x_{2}
$$

## <Solution>

In Example 8.1, with $a=0$, then we have

$$
\dot{y}=-b\left(y z+z^{2}\right), \quad \dot{z}=-z+b\left(y z+z^{2}\right) \text { the }
$$

Moreover $A_{1}=0, g_{1}(y, 0)=0, g_{2}(y, 0)=0 \not /$ Hence, the origin is stable.
[Problem 8.15] Consider the system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}-x_{2}-\left(2 x_{2}+x_{1}\right)\left(1-x_{2}^{2}\right)
\end{aligned}
$$

(a) Using $V(x)=5 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}$, show that the origin is AS.

$$
\frac{\partial V}{\partial y} \dot{y}=0
$$

## <Solution>

From the given condition

$$
\text { (2) } \exists V(y)=y^{2} \in C^{\prime} \quad \text { sit. }
$$

Since (1) and (2) satisfy the conditions of Corollary 8.1, the origin of the fall

$$
\begin{aligned}
\dot{V}(x) & =10 x_{1} x_{2}+2 x_{2}^{2}+2 x_{1}\left\{-x_{1}-x_{2}-\left(2 x_{2}+x_{1}\right)\left(1-x_{2}^{2}\right)\right\}+4 x_{2}\left\{-x_{1}-x_{2}-\left(2 x_{2}+x_{1}\right)\left(1-x_{2}^{2}\right)\right\} \\
& =-2 x_{1}^{2}+4 x_{1} x_{2}-2 x_{2}^{2}-2\left(x_{1}+2 x_{2}\right)^{2}\left(1-x_{2}^{2}\right)
\end{aligned}
$$

For $\forall\left|x_{2}\right|<1, \dot{V}(x) \leq 0$.
stable "

$$
\dot{V}(x)=0 \Rightarrow \dot{V} \leq-2\left(x_{1}-x_{2}\right)^{2}=0 \Rightarrow x_{1}=x_{2} \Rightarrow \dot{x}_{1}=\dot{x}_{2}
$$

Then, we have

$$
x_{2}=-2 x_{2}-3 x_{2}\left(1-x_{2}^{2}\right) \Rightarrow-3 x_{2}\left(2-x_{2}^{2}\right)=0 \Rightarrow x_{2}=0 \Rightarrow x_{1}=0
$$

By LaSalle's theorem, the origin is AS.
(b) Let

$$
S=\left\{x \in R^{2} \mid V(x) \leq 5\right\} \cap\left\{x \in R^{2} \| x_{2} \mid \leq 1\right\}
$$

Show that $S$ is an estimate of the region of attraction.

## <Solution>

We know $\dot{V}(x) \leq 0$ for $\forall x \in S$. Hence, we have to show that $S$ is positively invariant set. The interior point of $S$ can not leave $S$ through the segment $A D$ and $B C$ since $A D$ and
$B C$ are the Lyapunov surface $V(x)=5$.
Let $W=x_{2}^{2}$ then

$$
\dot{W}=2 x_{2}\left\{-x_{1}-x_{2}-\left(2 x_{2}+x_{1}\right)\left(1-x_{2}^{2}\right)\right\} \Rightarrow-2 x_{2}\left(x_{1}+x_{2}\right)-2 x_{2}\left(2 x_{2}+x_{1}\right)\left(1-x_{2}^{2}\right)
$$

along the segment $\left|x_{2}\right|=1, \dot{W}=-2 x_{2}\left(x_{1}+x_{2}\right) \leq 0$. show


Thus, the interior point of $S$ can not leave $S$ through the segment $A D$ and $B C$. Therefore, $S$ is an estimate of the ROA.

[Problem 8.20] Consider the system

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}-g(t) x_{2}
$$

where $g(t)$ is continuously differentiable and $0<k_{1} \leq g(t) \leq k_{2}$ for all $t \geq 0$.
(a) Show that the origin is ES.

## <Solution>

Let $V(x)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}$ then,

$$
\dot{V}=x_{1} x_{2}+x_{2}\left(-x_{1}-g(t) x_{2}\right)=-g(t) x_{2}^{2} \leq-k_{1} x_{2}^{2}
$$

Let

$$
A(t)=\left[\begin{array}{cc}
0 & 1 \\
-1 & -g(t)
\end{array}\right], \bar{A}=\left[\begin{array}{cc}
0 & 1 \\
-1 & -
\end{array}\right], C(t)=\left[\begin{array}{ll}
0 & \sqrt{g(t)}
\end{array}\right]
$$

Prove this ! then the pair $(\bar{A}, C)$ is uniformly observable. Also, $A(t)=\bar{A}-C^{T} C$ and $C(t)$ is uniformly bounded. Then $(A(t), C(t))$ is also uniformly observable.

$$
\begin{aligned}
-\dot{P}(t) & =P(t) A(t)+A^{T}(t) P(t)+C^{T}(t) C(t) \\
& \Rightarrow P(t)=\left[\begin{array}{ll}
\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right] \Rightarrow V(t, x)=x^{T} P(t) x \Rightarrow \dot{V}(t, x)=-x^{T} C^{T} C x \leq 0
\end{aligned}
$$

Therefore, the origin is ES.
(b) Would (a) be true if $g(t)$ were not bounded? Consider $g(t)=2+\exp (t)$.
<Solution>
From the given condition,

$$
g(t)=2+\exp (t)
$$

and

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}-\left(2+\exp ^{t}\right) x_{2}
$$

Then,

$$
x_{2}=c \exp ^{-t} \Rightarrow x_{1}=-\left(1+\exp ^{-t}\right) c \Rightarrow x_{1} \rightarrow-c, x_{2} \rightarrow 0 \text { as } t \rightarrow \infty
$$

Therefore, the origin is not AS $\Rightarrow g(t)$ must be bounded.

* C.T. Chen 'Linear system theory and design' Ind Edition.

Consider the $n$-dim. LTV system

$$
\left(\begin{array}{l}
\dot{x}=A(t) x(t)+B(t) u(t)  \tag{1}\\
y=C(t) x(t)+A(t) u(t)
\end{array}\right.
$$

<Thu.> Assume that $A(t)$ and $C(t) \in C^{n-1}(n-1$ times continoensly differantivite) Then the system (1) is observable at to if there exists a finite

$$
t_{1}>t_{0} \quad \text { s.t. } \quad \rho\left[\begin{array}{c}
N_{0}\left(t_{1}\right) \\
N_{1}\left(t_{1}\right) \\
\vdots \\
N_{n-1}\left(t_{1}\right)
\end{array}\right]=n \quad \text { where }\left[\begin{array}{c}
N_{k+1}(t)=N_{k}(t) A(t)+\frac{d}{d t} N k(t), \\
k=0,1,2, \ldots, n-1 \\
N_{0}(t)=C(t)
\end{array}\right.
$$

<Def.> The system (1) is said to be uniformly observable in ( $-\infty, \infty$ ) iff $\exists \sigma_{0}>0$ and $\beta_{j}(\cdot)>0$ that depends on $\sigma_{0}$ sit.

$$
\begin{aligned}
& 0<\beta_{1}\left(\sigma_{0}\right) I \leq V\left(t, t+\sigma_{0}\right) \leq \beta_{2}\left(\sigma_{0}\right) \mathbb{I} \\
& 0<\beta_{3}\left(\sigma_{0}\right) I \leq \Phi^{\top}\left(t, t+\sigma_{0}\right) V\left(t, t+\sigma_{0}\right) \Phi\left(t, t+\sigma_{0}\right) \leq \beta_{+}\left(\sigma_{0}\right) \mathbb{I}
\end{aligned}, \forall t
$$

where $\Phi$ is the state transition matrix
and $V\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}} \Phi^{\top}\left(t, t_{0}\right)\left(^{\top}(t)(t) \Phi\left(t, t_{0}\right) d t\right.$.
8. 4

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}
\end{array}=-x_{2}+a x_{1}^{2}+b x_{1} x_{2}\right.} \\
0=0
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-x_{2}+b x_{1} x_{2}
\end{array}\right.
$$

fineorisction at the ongin

$$
\begin{aligned}
& \left.\frac{\partial f}{\partial x}\right|_{x=0}=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right], \text { ergen-vector } \Phi=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right] \\
& T=\Phi^{-1} \\
& T A T^{-1}=\Phi^{-1} A \Phi=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]^{-1}\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

change of varrables

$$
\left[\begin{array}{l}
y \\
z
\end{array}\right]=T\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
x_{1}+x_{2} \\
-x_{2}
\end{array}\right] \quad ; \quad \begin{aligned}
& x_{1}=y+z \\
& x_{2}=-z
\end{aligned}
$$

roduced syttem

$$
\begin{gathered}
\dot{y}=\dot{x}_{1}+\dot{x}_{2}=x_{2}-x_{2}+b x_{1} x_{2}=b x_{1} x_{2}=-b\left(y z+z^{2}\right) \\
\dot{z}=-\dot{z}_{2}=x_{2}-b x_{2} x_{2}=-z+b\left(y_{2}+z^{2}\right) \\
N(h(y))=\frac{2 h}{\partial y}(y)\left[-b\left(y h(y)+h(y)^{2}\right)\right]-h(y)+b\left(y h(y)+h(y)^{2}\right)=0 \\
\\
, h(0)=h^{\prime}(x)=0
\end{gathered}
$$

$h(y)=0$ is exact solutim
$\Rightarrow \dot{y}=0$; reduaed system $\dot{y}=0$ has stable orron with $V(y)=y^{2}$

$$
\dot{V}(y)=2 y \dot{y}=0 \quad \text { by Cor }, \text { ह.1., }
$$

$\therefore$ The erigh of the full-sustem is stable
8.15

$$
\left[\begin{array}{l}
\dot{x}_{1}=x_{2} \\
\dot{x}=-x_{1}-x_{2}-\left(2 x_{2}+x_{1}\right)\left(1-x_{2}^{2}\right)
\end{array}\right.
$$

(a) $V(x)=5 x_{1}^{2}+2 x x_{2}+2 x_{2}^{2}$

$$
\begin{aligned}
V_{21} 1 & =10 x_{1} \dot{x}_{1}+2 \dot{x}_{1} x_{2}+2 x_{1} \dot{x}_{2}+4 x_{2} \dot{x}_{2} \\
& =10 x_{1} x_{2}+2 x_{2}^{2}+2\left(x_{1}+2 x_{2}\right)\left[-x_{1}-x_{2}-\left(2 x_{2}+x_{1}\right)\left(1-x_{2}^{2}\right)\right] \\
& =104 x_{2}+2 x_{2}^{2}+2\left(x_{1}+2 x_{2}\right)\left(-x_{1}-x_{2}\right)-2\left(x_{1}+2 x_{2}\right)^{2}\left(1-x_{2}^{2}\right) \\
& =-2 x_{1}^{2}-2 x_{2}^{2}+4 \sin x_{2}-2\left(x_{1}+2 x_{1}\right)\left(1-x_{2}^{2}\right) \\
& =-2\left(x_{1}-x_{2}\right)^{2}-2\left(x_{1}+2 x_{2}\right)^{2}\left(1-x_{2}^{2}\right) \\
& \leqslant-2\left(x_{1}-x_{2}\right)^{2}, \quad \forall x_{2}^{2} \leq 1 ; \quad\left|x_{2}\right| \leq 1
\end{aligned}
$$

 $\therefore$ The origin of system $B$ asymptotrally stable $\downarrow\left(\begin{array}{l}\text { bale's } \\ \text { Thu. }\end{array}\right.$
(b)

$$
\begin{aligned}
& \left|x_{2}\right| \leq 1 \quad:\left|b^{\top} x\right| \leq 1 \Rightarrow b=\left[\begin{array}{lll}
0 & 1^{\top}, r-1 \\
\quad c< & \frac{r^{2}}{b^{\top}+1 b} & =\frac{1}{[0} 1
\end{array}\right] \frac{1}{9}\left[\begin{array}{cc}
-1 \\
-1 & f
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}=\frac{p}{5}=1.88
$$

If $S$ is not positively but, we can obeam a better estimate of $R_{A}$ invariant, a state $\quad \sigma=x_{2}$ To show that the trajectories cannot leave $S$ through (3) $(4)$, may go through/ /lime (or (2), (3, (4)

$$
\frac{\partial}{\partial t} \sigma^{2}=2 \sigma \dot{\sigma}=20 \dot{x}_{2}=\alpha t\left(-x_{1}-x_{2}-\left(2 x_{2}+x\right)\left(1-x_{2}^{2}\right)\right)
$$


a the boundary $\sigma=1$

$$
\frac{1}{d x} \sigma^{2} \leq-2 \sigma\left(x_{1}+x_{2}\right) \leq 0 \quad ; \quad-2\left(x_{1}+1\right) \leq 0
$$

From ( $a$ ), we canknow on the bombing $\sigma=-1$
that, on $Q_{\text {and }}(2), \dot{V}(x) \leq 0$. $f=0^{2} \leq-2(-1)\left(x_{1}-1\right) \leq 0 ; \quad\left(x_{1}-1\right) \leq 0 ; \quad x_{1} \leq 1$ Therefore, the state trajectories cannot leave $S$ through (1) $n 2)^{C_{1}}=\left.V_{(x)}\right|_{x_{1}=-1, x_{2}=1}=5, Q_{2}=\left.V_{\left(x_{3}\right)}\right|_{x_{1}=1, x_{0}=-1}=5$

$$
\pi \quad \therefore \quad S=\left\{x \in R^{2} \mid V_{\infty 0} \leqslant 5\right\} \cap\left\{x \in R^{2}| | x_{2} \mid \leqslant 1\right\}
$$

8.20

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}-g(t) x_{2}
$$

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-1 & -q(t)
\end{array}\right] \quad \& \quad 0<k_{1} \leqslant q(t) \leqslant k_{2} \text { for all } t \geqslant 0
$$

$$
\dot{V}=x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}=x_{1} x_{2}-x_{1} x_{2}-g(t) x_{2}^{2}=-g(t) x_{2}^{2} ; \quad \dot{V} \leq 0
$$

$$
0<\frac{1}{2} I \leqslant P \leqslant 2 I \quad P=\frac{1}{2} I
$$

$$
-\dot{p}(t)=p(t) A(t)+A^{\top}(t) p(t)+C^{\top}(t) C_{(t)}
$$

$$
\dot{V}\left(t_{1} x\right)=\frac{1}{2}\left[\dot{x} \dagger p x+x^{\top} p x+x^{\top} p x\right]
$$

$$
=\frac{1}{2}\left[x^{\top} A^{\top} p x+x^{\top} p A x+x^{\top} p x\right]
$$

$$
=\frac{1}{2} x^{\top}\left[A^{\top} p+P A+\dot{p}\right] x
$$

$$
=-\frac{1}{2} x^{\top} c^{\top} c x
$$

$$
\Rightarrow \dot{V}(t, x)=-\frac{1}{2} x^{\prime} c^{\top} c x=-g(t) \cdot x_{2}^{2} \leq 0
$$

$$
=-\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
0 & 0 \\
0 & g(t)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

cannot this approach $\quad C=\frac{1}{2}\left[\begin{array}{c}0 \\ \sqrt{g(t)}\end{array}\right]^{\top}$
for LTV systems fibservability chock

$$
\begin{aligned}
& \theta=\left[\begin{array}{c}
c \\
C A
\end{array}\right]=\left[\begin{array}{cc}
0 & \frac{1}{2} \sqrt{g(t)} \\
\frac{\sqrt{9(t)}}{2} & \frac{-g(t) \sqrt{9(t)}}{2}
\end{array}\right], \operatorname{rank}(\theta)=2 \\
& \text { bservablity }
\end{aligned}
$$

$$
\text { All } t \geq 0 \text { ont } \sqrt{q(t)} \neq 0 \Rightarrow \text { uniformly observable. }
$$

$$
\text { Lat } x(t)=I\left(t, t_{0}\right) \cdot x(w)
$$

$$
V(t+\delta, \phi(t+\delta ; t, x))-V(t, x)=\int_{t}^{t+\delta} \dot{V}(\tau, \phi(\tau ; t, x)) d \tau
$$

From uniform observability of $(A(t), c(t))$,

$$
=-x^{\top} \omega(t, t+8) x
$$

$$
\text { let } k<2
$$

$$
\begin{gathered}
V(t+\delta, \phi(t+\delta ; t, x))-V(t, x) \leq-k\|x\|^{2} \leq-\frac{\hbar}{2} V(t, x) \\
\frac{k}{2}=\lambda ; \quad 0<k<2 \\
\\
\end{gathered}
$$

by Theorem of The origin of system is asprexscdyly stable.
(b) Sex (a) ok $\dot{V}(t, x)=-g(t) x_{2}^{2}$

Neat $g(t)=2+\exp (t)$ Yb t

$$
\begin{aligned}
V(t, x) & =-g(t) x_{2}^{2} \\
& =-\left(2+e^{t}\right) x_{2}^{2} \leq 0
\end{aligned}
$$

$$
g(t) \leq a m+n x x_{2} 2 n x
$$


ir) $V=\left[\begin{array}{c}C \\ C A\end{array}\right]=\frac{1}{2}\left[\begin{array}{cc}0 & \sqrt{g(t)} \\ -\sqrt{q_{(t)}} & -q(t \sqrt{g(t)}\end{array}\right]$
if $q(t)=0$, then $\sqrt{q(\theta)}=0 \Rightarrow \operatorname{rank}(\theta) \neq 2$
finally. Observable 하시 ox아.

$$
q(t)=2+e^{t} \text { af ot } q(t)=2+e^{t} \neq 0 .
$$


i) $\&(\pi) ; \dot{V}(t, x)<0 \quad \& \quad \operatorname{rank}(\theta)=2$
finally, if $g(t)=2+\exp (t)$; unbounded $g(t)$
thin, the origen of system is exponentially stable

