## Quiz \#1

2008.10.01

1. (15) Calculate $\int_{C} \vec{F}(\vec{r}) \cdot d \vec{r}$ for the following data. If $\vec{F}$ is a force, this gives the work done in the displacement along C .

$$
\vec{F}=\left[\cosh \mathrm{x}, \sinh \mathrm{y}, \mathrm{e}^{\mathrm{z}}\right], \quad \mathrm{C}: \mathrm{r}=\left[\mathrm{t}, \mathrm{t}^{2}, \mathrm{t}^{3}\right] \quad \text { from }(0,0,0) \text { to }\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)
$$

2. (15) Using Green's theorem, evaluate $\int_{C} \vec{F}(\vec{r}) \cdot d \vec{r}$ counterclockwise around the boundary curve C of the region R .
$\vec{F}=\left[-\mathrm{e}^{\mathrm{y}}, \mathrm{e}^{\mathrm{x}}\right], \quad \mathrm{R}$ the triangle with vertices $(0,0),(2,0),(2,1)$
3. (10) Evaluate the integral $\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d A$ directly for the given $\vec{F}$ and S .

$$
\vec{F}=\left[4 z^{2}, 16 x, 0\right], \quad S: z=y \quad(0 \leq x \leq 1,0 \leq y \leq 1)
$$

