물리화학2 숙제 2 - 10월 7일 (2008년 10월 14일 수업 전 제출)

- 1. (1) Distinguish between a pre-equilibrium approximation and a steady-state approximation.
 - (2) A first-order decomposition reaction is observed to have the following rate constants at the indicated temperatures. Estimate the activation energy.

k/(10 ⁻³)s ⁻¹	2.46	45.1	576
⊖/℃	0	20.0	40.0

- (3) Distinguish between a primary and a second kinetic isotope effect.
- 2. A reacts to form either B or C according to,

$$A \xrightarrow{k_1} B$$
$$A \xrightarrow{k_2} C$$

- (1) Derive equations for the concentrations of [B] and [C] as functions of time. (at t=0, [A]=[A]₀, [B]=[B]₀=0, [C]=[C]₀=0)
- (2) Express the half life of A, $t_{1/2}$ for the reaction terms of k_1 and k_2 ?
- (3) Show that E_a the observed activation energy for the disappearance of A, is given by

$$E_a = \frac{k_1 E_1 + k_2 E_2}{k_1 + k_2}$$

Where E_1 is the activation energy for the first reaction and E_2 is the activation energy for the second reaction.

3. There is a reaction of $1^{\rm st}$ order in forward and $2^{\rm nd}$ order in reverse.

$$A \underset{k_b}{\overset{k_a}{\rightleftharpoons}} B + C$$

Derive a relaxation time constant (au) to be $\dfrac{1}{k_a + 2k_b[B]_{ea}}$

4. The reaction mechanism

$$A_2 \iff A + A \text{ (fast)}$$

$$A + B \longrightarrow P (slow)$$

involves an intermediate A. Deduce the rate law for the reaction.

5. 논문 (Orkin et al., J. Phys. Chem., 1997, 101:174)에서 다음과 같은 hydroxyl 라디칼과 chlorobromomethane 사이의 반응에 대한 반응 속도 상수가 결정되었다.

이 반응에 대하여 얻어진 자료는 다음 표와 같다.

T(K)	k [cm ³ /(molecule·second)]	
298	1.11×10^{-13}	
313	1.34×10^{-13}	
330	1.58×10^{-13}	

- (1) 그래프를 작성하여 Arrhenius 식이 성립함을 확인하고, A와 EA를 결정하시오.
- (2) 앞의 결과에서 얻은 정보를 이용하여 $370 \mathrm{K}$ 에서의 속도 상수를 계산하시오. 이것을 실험적으로 얻어진 값 $2.10 \times 10^{-13}~\mathrm{cm}^3/(\mathrm{molecule \cdot second})$ 과 비교하시오.