[물리화학2] Homework 4

1. A bimolecular elementary reaction in gas phase is

$$A + B \xrightarrow{k_2} P$$

The rate of reaction is described as:

$$k_2 = N_A \int_0^\infty \sigma(\varepsilon) v_{rel} f(\varepsilon) d\varepsilon$$

- (1) Express $\sigma(\epsilon)$ in terms of σ (collision cross-section) and \mathcal{E}_a (threshold kinetic energy)
- (2) Derive k_2 when the distribution of molecular speeds is given as:

2. For the gas-phase reaction $A+A \rightarrow A_2$, the experimental rate constant, k_2 , has been fitted to the Arrehenius equation with the pre-exponential factor $A = 4.07 \times 10^5 \ dm^3 mol^{-1} s^{-1}$ at 300 K and an activation energy of 65.43 k/mol⁻¹. Calculate $\Delta_{+}^{+}S$, $\Delta_{+}^{+}H$, and $\Delta_{+}^{+}U$ for the reaction.

3. Derive the Eyring equation
$$\left(k_2 K \frac{kT}{h} \overline{K_c^{\ddagger}}\right)$$
 in activated complex theory.

$$\boxed{A + B \leftrightarrow C^{\ddagger} \rightarrow P}_{V=k^{\ddagger}[C^{\ddagger}], \ v=k_2[A][B]}$$

4. Derive material balance equation $\frac{\partial [J]}{\partial t} = D \frac{\partial^2 [J]}{\partial x^2} - v \frac{\partial [J]}{\partial x} - k[J]$ under pseudo 1st order reaction and forced convection velocity v.

5. The rate constant for the dissociation of ethane is given by $k = 5 \times 10^{16} e^{-368kJ/RT}$ between 823 and 893 K, where Ea = -368 kJ. Calculate the enthalphy and the entropy of activation for this reaction at 850 K.

$$C_2H_6 \leftrightarrow (CH_3 - CH_3)^{\ddagger} \rightarrow 2CH_3$$