Automata Theory

Homework 3: due 27 November 2008

- 1. Universal Turing machine
 - Input: A Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, H)$ and a string w. The Turing machine is represented by a transition table.

state	input symbol		
	0	1	#
0	(2, 0, S)	(2, 1, S)	(1, #, R)
1	(1, 1, R)	(1, 0, R)	(3, #, S)
2	(2, 0, S)	(2, 1, S)	(2, #, S)

Assume that $\Sigma = \{0, 1\}$ and $q_0 = 0$. The states for which the transition function is undefined are halting states.

• Output: The output of M on w.

Explain how your universal Turing machine works in your report.

- 2. Turing machine L that computes $\lfloor \log_2 n \rfloor$
 - Input: *n* in unary notation
 - Output: $\lfloor \log_2 n \rfloor$ in unary notation

Draw a figure of your Turing machine L in your report. Also explain how L works in your report. Store L in a file logn.in as a transition table.

3. Implementation

- Your implementation of the universal Turing machine doesn't have to be a real Turing machine.
- Run your universal Turing machine with your Turing machine L and various inputs.
- Hand in your programs, executable files, and an example running by email to tyjeong@theory.snu.ac.kr.
- Write down the environment you run your program.
- Write comments appropriately in your program.