Honework 2.

故
1.

$a \geq b z c \geq 0$ of ellopsoid al tion $\frac{5}{2} \frac{2}{3}$ a, b, c el demog factor $\frac{2}{2}$ L，M，Nopt itat．

$$
\begin{aligned}
& L=\frac{\cos \phi \cos 2 \theta}{\sin ^{3} \theta \sin ^{2} \alpha}[F(k, \theta)-E(k, \theta)] \\
& M=\frac{\cos \phi \cos 2 \theta}{\sin ^{2} \theta \sin ^{2} \alpha \cos ^{2} \alpha}\left[E(k \theta)-\cos ^{2} \alpha F(k, \theta)-\frac{\sin ^{2} \alpha \sin \theta \cos \theta}{\cos \phi}\right] . \\
& N=\frac{\cos \phi \cos \theta}{\sin ^{2} \theta \cos ^{2} \alpha}\left[\frac{\sin \theta \cos \phi}{\cos \theta}-E(k, \theta)\right]
\end{aligned}
$$

जन1析 $\cos \theta=\frac{c}{a}, \quad \cos \phi=b / a \quad(0 \leq \theta, \phi \leq \pi / 2)$ ．

$$
\sin \alpha=\left[\frac{1-(b / a)^{2}}{1-(c / a)^{2}}\right]^{1 / 2}=\frac{\sin \phi}{\sin \theta}=k \quad(0 \leq \alpha \leq \pi / 2) .
$$

$F(k, \theta), E(k, \theta) 乞$ elliptic integrals．k ：modulas．
θ ：amplitude of intergrals．

i）$b=c$

$$
\begin{aligned}
& b=c \\
& L=\frac{1}{m^{2}-1}\left[\frac{n}{2\left(m^{2}-1\right)^{1 / 2}} \times \ln \left(\frac{n+\left(m^{2}-1\right)^{1 / 2}}{m-\left(m^{2}-1\right)^{1 / 2}}\right)-1\right] \\
& M=N=\frac{m}{2\left(m^{2}-1\right)}\left[m-\frac{1}{2\left(m^{2}-1\right)^{1 / 2}} \times \ln \left(\frac{m+\left(m^{2}-1\right)^{1 / 2}}{m-\left(m^{2}-1\right)^{1 / 2}}\right]\right.
\end{aligned}
$$

VIIM，$m=\frac{a}{c}$

Homenork 2 201/
$m \gg 1$ ol 0

$$
\begin{aligned}
& L \simeq\left(1 / m^{2}\right)(\ln 2 m-1) \\
& M=N \simeq \frac{1}{2}\left[1-(\ln 2 m-1) / m^{2}\right]
\end{aligned}
$$

ii) $a \ggg c$

$$
\begin{aligned}
& L=\left(b / a^{2}\right)(\ln 4 a /(b+c)-1) \\
& M=c / b+c)-\frac{1}{2}\left(b c / a^{2}\right) \ln [4 a /(b+c)]+b c(3 b+c) / 4 a^{2}(b+c) \\
& N=b /(b+c)-\frac{1}{2}\left(b c / a^{2}\right) \ln [4 a /(b+c)]+b c(b+3 c) / 4 a^{2}(b+c) .
\end{aligned}
$$

iii)

$$
\begin{aligned}
& a=\infty, \quad b \geq c \\
& M=c /(b+c) \\
& N=b /(b+c) .
\end{aligned}
$$

iv)

$$
\begin{aligned}
& a=b \\
& L=M=\frac{1}{2\left(m^{2}-1\right)}\left\{m^{2}\left(m^{2}-1\right)^{-1 / 2} \times \arcsin \left[\left(m^{2}-1\right)^{1 / 2 / m}\right]-1\right\} \\
& N=m^{2} /\left(m^{2}-1\right)\left\{1-1 /\left(m^{2}-1\right)^{1 / 2} \times \arcsin \left[\left(m^{2}-1\right)^{1 / 2} / m\right]-1\right\} \\
& m \gg 1 \\
& L=M \approx(0 \geq \\
& N=1 / 4 m)(1-4 / \pi m) .
\end{aligned}
$$

v)

$$
\begin{aligned}
& a=b \gg c \\
& L=\frac{c}{a}\left(1-e^{2}\right)^{1 / 2} \frac{k-E}{e^{2}} \quad, M=\frac{c}{a} \frac{E-\left(1-e^{2}\right) k}{e^{2}\left(1-v^{2}\right)^{1 / 2}} \\
& N=1-\frac{c E}{a\left(1-e^{2}\right)^{1 / 2}}
\end{aligned}
$$

$K, E \leq$ ellppic integral $e=\left(1-b^{2} / a^{2}\right)^{1 / 2}$.

