Elementary Numerical Analysis

HW\#2: Polynomial Interpolation

Due Sept. 18

In this problem set, you will examine the two methods of polynomial interpolation and the error associated with using a finite order polynomial.

1. Show that the $(\mathrm{n}+1)$ th order divided difference is related with the $(\mathrm{n}+1)$ th order derivative as follows:

$$
f\left[x, x_{0}, x_{1}, \ldots x_{n}\right]=\frac{f^{(n+1)}(\xi)}{(n+1)!} ; \quad a \leq \xi(x) \leq b
$$

where all x points are defined within $[a, b]$. Use the fact that the error of an n-th order polynomial approximating $f(x)$ is:

$$
E(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!} \prod_{i=0}^{n}\left(x-x_{i}\right)
$$

2. Write a function program that finds the coefficients of the Lagrange polynomial given two vectors specifying the coordinates of the x and y points. Write another function that obtains the polynomial value at a specified point. Use the x -value, data point x -coordinate vector, the coefficient vector as the input argument.
3. Perform Lagrange interpolation with the following 11 data points which represent a damped oscillation given by

$$
f(x)=e^{-2 x} \cos (4 \pi x)
$$

x: 0.0
0.1
0.2
0.3
0.4
0.5
y: 1.0000e+0
$2.5300 \mathrm{e}-1$
$5.4230 \mathrm{e}-1$
$4.4400 \mathrm{e}-1$
1.3885e-1
3.6788e-1
x: 0.6
0.7
0.8
0.9
1.0
$y: 9.3074 \mathrm{e}-2$-1.9950e-1 -1.6334e-1 $\quad 5.1080 \mathrm{e}-2 \quad 1.3534 \mathrm{e}-1$

Evaluate the polynomial at 101 points (interval size 0.01) and plot the results along with the true function.

Elementary Numerical Analysis

2008 년 2 학기
4. Suppose that there is one more data point available, ($0.85,-5.6452 \mathrm{e}-2$). You can use this additional point to obtain the ($\mathrm{n}+1$) the order divided difference which can be used to estimate the error using the formula given in the second equation in Prob. 1. Estimate the error at $\mathrm{x}=0.95$ by estimating the divided difference using the attached function. Compare this estimated error with the exact error obtained from the known function value.

