1. Derive the Laplace transforms of the exponentially decaying sine and cosine functions, $e^{-a t} \sin \omega t$ and $e^{-a t} \cos \omega t$, where a and ω are constants.
2. Derive the Laplace transform of the function $t \cos \omega t$.
3. Determine the complete response of the following model, which has a ramp input:

$$
\dot{x}+3 x=5 t \quad x(0)=10
$$

4. Use two methods to obtain the inverse Laplace transform of

$$
X(s)=\frac{3 s+7}{4 s^{2}+24 s+136}=\frac{3 s+7}{4\left(s^{2}+6 s+34\right)}
$$

5. Use the Laplace transform to solve the following problem:

$$
\ddot{x}+6 \dot{x}+34 x=5 \sin 6 t \quad x(0)=0 \quad \dot{x}(0)=0
$$

6. (a) Derive the Laplace transform of the function $A \sin (\omega t+\phi)$.
(b) Generalize the answer from part (a) to find the Laplace transform of $A e^{-a t} \sin (\omega t+\phi)$.
7. Obtain the inverse Laplace transform of

$$
X(s)=\frac{1-e^{-2 s}}{s(s+4)}
$$

8. Suppose a rectangular pulse $P(t)$ of unit height and duration 2 is applied to the first-order model $\dot{x}+4 x=P(t)$ with a zero initial condition. Use the Laplace transform to determine the response. (***Draw a graph of the response.***)
9. Obtain the transfer functions $X(s) / F(s)$ and $Y(s) / F(s)$ for the following model:

$$
3 \dot{x}=y \quad \dot{y}=f(t)-3 y-15 x
$$

10. Solve the following Problems for $x(t)$. Compare the values of $x(0+)$ and $x(0)$. For parts (b) through (d), also compare the values of $\dot{x}(0+)$ and $\dot{x}(0)$.
a. $7 \dot{x}+5 x=4 \delta(t) \quad x(0)=3$
b. $\ddot{x}+14 \dot{x}+49 x=3 \delta(t) \quad x(0)=2 \quad \dot{x}(0)=3$
11. Obtain the Laplace transform of the function plotted in Figure 1.
12. A trapezoidal profile $f(t)$ is shown in Figure 2. Obtain the response $x(t)$ of the following model:

$$
2 \dot{x}+x=f(t) \quad x(0)=0
$$

Fig 1.

Fig 2.

