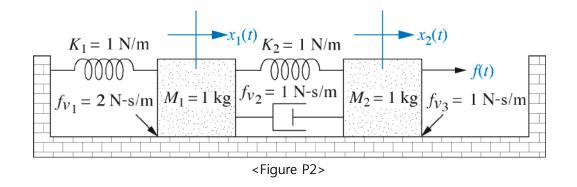
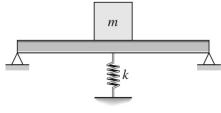

기계 항공 시스템 해석 2009.1학기

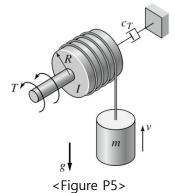

HW#3. Due

Due 4/2 AM 9:00

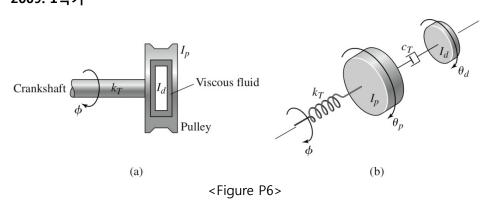
1. Find the transfer function, $G_1(s) = \frac{X_1(s)}{F(s)}$, $G_2(s) = \frac{X_2(s)}{F(s)}$, for the translational mechanical network shown in Figure P1. Use MATLAB step & impulse function input f(t) to solve each transfer function $G_1(s)$, $G_2(s)$, then **draw two graph in one plot**(Hint: use <u>hold on</u>) and compare step response with impulse response.


2. For the system of Figure P2, find the transfer function, $G_1(s) = \frac{X_1(s)}{F(s)}$, $G_2(s) = \frac{X_2(s)}{F(s)}$. Use MATLAB step & impulse function input f(t) to solve each transfer function $G_1(s)$, $G_2(s)$, then **draw two graph in one plot**(Hint: use <u>hold on</u>) and compare step response with impulse response.

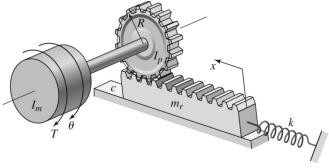
3. A table with four identical legs supports a vertical force. The solid cylindrical legs are made of metal with $E = 2 \times 10^{11} \text{ N/m}^2$. The legs are 1 m in length and 0.03 m in diameter. Compute the equivalent spring constant due to the legs, assuming the table top is rigid.


기계 항공 시스템 해석 2009.1학기

- 4. The beam shown in Figure P4 has been stiffened by the addition of a spring support. The steel beam is 3 ft long, 1 in thick, and 1 ft wide, and its mass is 3.8 slugs. The mass m is 40 slugs. Neglecting the mass of beam,
 - a. Compute the spring constant k necessary to reduce the static deflection to onehalf its original value before the spring k was added.
 - b. Compute the natural frequency ω_n of the combined system.

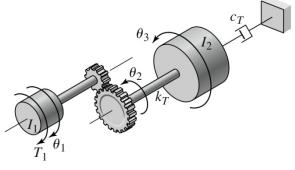

<Figure P4>

- 5. In Figure P5 a motor supplies a torque T to turn a drum of radius R and inertia I about its axis of rotation. The rotating drum lifts a mass m by means of a cable that wraps around the drum,. The drum's speed is ω . Viscous torsional damping C_T exists in the drum shaft. Neglect the mass of the cable.
 - a. Obtain the equation of motion with the torque T as the input and the vertical speed v of the mass as the output.
 - b. Suppose that m = 40 kg, R = 0.2 m, $I = 0.8 \text{ kg} \cdot \text{m}^2$, and $C_T = 0.1 \cdot \text{N} \cdot \text{m} \cdot \text{s}$. Find the speed v(t) if the system is initially at rest and the torque T is a step function of magnitude 200 N \cdot m.



6. Figure P6 shows a Houdaille damper, which is a device attached to an engine crankshaft to reduce vibrations. The damper has an inertia I_d that is free to rotate within an enclosure filled with viscous fluid. The inertia I_d is the inertia of the fan-belt pulley. Modeling the crankshaft as a torsional spring K_T , the damper system can be modeled as shown in part (b) of the figure. Derive the equation of motion with the angular displacements θ_p and θ_d as the outputs and the crankshaft angular displacement φ as the input.

기계 항공 시스템 해석 2009.1학기



7. Figure P7 shows a rack-and-pinion gear in which a damping force and a spring force act against the rack. Develop the equivalent rotational model of the system with the applied torque T as the input variable and the angular displacement θ is the output variable. Neglect any twist in the shaft.

<Figure P7>

8. Figure P8 shows a drive train with a spur-gear pair. The first shaft turns N times faster than the second shaft. Develop a model of the system including the elasticity of the second shaft. Assume the first shaft is rigid, and neglect the gear and shaft masses. The input is the applied torque T₁. The outputs are the angles θ_1 and θ_3 .

<Figure P8>