1. Find the transfer function, $\mathrm{G}_{1}(\mathrm{~s})=\frac{\mathrm{X}_{1}(\mathrm{~s})}{\mathrm{F}(\mathrm{s})}, \mathrm{G}_{2}(\mathrm{~s})=\frac{\mathrm{X}_{2}(\mathrm{~s})}{\mathrm{F}(\mathrm{s})}$, for the translational mechanical network shown in Figure P1. Use MATLAB step \& impulse function input f(t) to solve each transfer function $G_{1}(s), G_{2}(s)$, then draw two graph in one plot(Hint: use hold on) and compare step response with impulse response.

2. For the system of Figure P2, find the transfer function, $G_{1}(s)=\frac{X_{1}(s)}{F(s)}, G_{2}(s)=\frac{X_{2}(s)}{F(s)}$. Use MATLAB step \& impulse function input $f(t)$ to solve each transfer function $G_{1}(s), G_{2}(s)$, then draw two graph in one plot(Hint: use hold on) and compare step response with impulse response.

3. A table with four identical legs supports a vertical force. The solid cylindrical legs are made of metal with $E=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$. The legs are 1 m in length and 0.03 m in diameter. Compute the equivalent spring constant due to the legs, assuming the table top is rigid.

## 기계 항공 시스템 해석

2009. 1학기
2010. The beam shown in Figure P4 has been stiffened by the addition of a spring support. The steel beam is 3 ft long, 1 in thick, and 1 ft wide, and its mass is 3.8 slugs. The mass m is 40 slugs. Neglecting the mass of beam,
a. Compute the spring constant k necessary to reduce the static deflection to onehalf its original value before the spring k was added.
b. Compute the natural frequency $\omega_{\mathrm{n}}$ of the combined system.

2011. In Figure P5 a motor supplies a torque $T$ to turn a drum of radius $R$ and inertia $I$ about its axis of rotation. The rotating drum lifts a mass $m$ by means of a cable that wraps around the drum,. The drum's speed is $\omega$. Viscous torsional damping $\mathrm{C}_{\mathrm{T}}$ exists in the drum shaft. Neglect the mass of the cable.
a. Obtain the equation of motion with the torque T as the input and the vertical speed v of the mass as the output.
b. Suppose that $\mathrm{m}=40 \mathrm{~kg}, \mathrm{R}=0.2 \mathrm{~m}, \mathrm{I}=0.8 \mathrm{~kg} \cdot \mathrm{~m}^{2}$, and $\mathrm{C}_{\mathrm{T}}=0.1 \cdot \mathrm{~N} \cdot \mathrm{~m} \cdot \mathrm{~s}$. Find the speed $v(t)$ if the system is initially at rest and the torque $T$ is a step function of magnitude $200 \mathrm{~N} \cdot \mathrm{~m}$.

<Figure P5>
2012. Figure P 6 shows a Houdaille damper, which is a device attached to an engine crankshaft to reduce vibrations. The damper has an inertia $\mathrm{I}_{\mathrm{d}}$ that is free to rotate within an enclosure filled with viscous fluid. The inertia $I_{d}$ is the inertia of the fan-belt pulley. Modeling the crankshaft as a torsional spring $\mathrm{K}_{\mathrm{T}}$, the damper system can be modeled as shown in part (b) of the figure. Derive the equation of motion with the angular displacements $\theta_{\mathrm{p}}$ and $\theta_{\mathrm{d}}$ as the outputs and the crankshaft angular displacement $\varphi$ as the input.

## 기계 항공 시스템 해석

2009. 1학기

(a)

(b)
<Figure P6>
2010. Figure P7 shows a rack-and-pinion gear in which a damping force and a spring force act against the rack. Develop the equivalent rotational model of the system with the applied torque T as the input variable and the angular displacement $\theta$ is the output variable. Neglect any twist in the shaft.

<Figure P7>
2011. Figure P8 shows a drive train with a spur-gear pair. The first shaft turns N times faster than the second shaft. Develop a model of the system including the elasticity of the second shaft. Assume the first shaft is rigid, and neglect the gear and shaft masses. The input is the applied torque $T_{1}$. The outputs are the angles $\theta_{1}$ and $\theta_{3}$.

<Figure P8>
