P. 5-19 The cross section of a long thin metal strip and a parallel wire is shown in Fig. 5-30. Equal and opposite currents I flow in the conductors. Find the force per unit length on the conductors.

Solution)
$d B$ at the wire due to $d I$ on the metal strip :

$$
d B(D)=\frac{\mu_{0} d I}{2 \pi r}=\frac{\mu_{0} I d y}{2 \pi w \sqrt{D^{2}+y^{2}}}
$$

$\mathbf{B}(D)=\int d B$ has only y-component due to symmetry about x-axis(x-components are cancelled)

$$
\mathbf{B}(D)=2 \int_{0}^{w / 2} d B \frac{D}{\sqrt{D^{2}+y^{2}}}=\hat{y} \frac{\mu_{0} I D}{\pi w} 2 \int_{0}^{w / 2} d B \frac{d y}{D^{2}+y^{2}}=\hat{y} \frac{\mu_{0} I}{\pi w} \tan ^{-1}\left(\frac{w}{2 D}\right)
$$

Force per unit length on the wire :

$$
\mathbf{F}^{\prime}=\frac{\mathbf{F}}{l}=\mathbf{I} \times \mathbf{B}=(-\hat{z} I) \times \hat{y} \frac{\mu_{0} I}{\pi w} \tan ^{-1}\left(\frac{w}{2 D}\right)=\hat{x} \frac{\mu_{0} I^{2}}{\pi w} \tan ^{-1}\left(\frac{w}{2 D}\right) \quad(N / m)
$$

P.5-21 5-21 A d-c current $I=10(\mathrm{~A})$ flows in a triangular loop in the xy-plane as in Fig. 5-32. Assuming a uniform magnetic flux density $\mathbf{B}=\mathbf{a}_{y} 6(m T)$ in the region, find the forces and torque on the loop. The dimensions are in (cm).

Solution)

$$
\begin{aligned}
& \mathbf{F}=\Pi \mathbf{L} \times \mathbf{B} \\
& \mathbf{F}_{A B}=\Pi \mathbf{L}_{A B} \times \mathbf{B}=-\hat{z} 6 \times 10^{-3}(\mathrm{~N}) \\
& \mathbf{F}_{B C}=\Pi \mathbf{L}_{B C} \times \mathbf{B}=-\hat{z} 12 \times 10^{-3}(\mathrm{~N}) \\
& \mathbf{F}_{C A}=\Pi \mathbf{L}_{C A} \times \mathbf{B}=-\hat{z} 6 \times 10^{-3}(\mathrm{~N})
\end{aligned}
$$

Total force on loop :

$$
\mathbf{F}_{\text {total }}=\mathbf{F}_{A B}+\mathbf{F}_{B C}+\mathbf{F}_{C A}=0
$$

Torque on loop :

$$
\mathbf{T}=\mathbf{m} \times \mathbf{B}=(\hat{z} I s) \times(\hat{y} B)=-\hat{x} 1.2 \times 10^{-3}(N \cdot m)
$$

