2009 Spring 03. 25. 2009

Advanced Physical Metallurgy "Amorphous Materials"

	Class #	<u>Name</u>		
1. Fill in the blank.				
When a liquid is cooled sufficiently below the () of its crystalline phase, the		
relaxation time for structural rearrange	ement dramatically	(). If
() can be avoided by suf	ficiently rapid cooling	g, most ()
will enter a metastable glassy state. Th	e liquid-to-glass tra	insition can be	e character	rized
experimentally by a temperature called t	the () at w	/hich
the viscosity of the supercooled liquid	is typically ().	This visce	osity
corresponds to () of the	order of minutes to	hours. Upon	cooling a li	iquid
toward $T_{ m g}$, various physical and	thermodynamic	properties	change	with
().				
relaxation times / crystallization / supercooled lie	quids / increase / tempe	rature / 10 ¹³ pois	e / melting p	oint /
glass transition temperature /				

2. Draw schematic diagrams for the relationship between G (Gibb's free energy) (or S (Entropy), C_p (heat capacity)) and T (temperature) in liquid to glass transition and liquid to crystal transition.