-~ Chapter 4 Answers
31, (a) Let z(t) = e~ 2=yt = 1). Then the Fourier transform X (jw) of (1) is:

X(u) = f" M Ny(t = 1)e e
b fme‘af“‘)g""“dl
1

= e M2+ jw)

|X (jw)! is as shown in Figure S4.1.
(b) Let 2(t) = e~2=!, Then the Fourier transform X (juw) of z(t) is:

e .
X(jw) = f el gmivty
-
oo 1
= / e-dt-Vg—tutgy o [ gAMi=lemrtyy
1 —od

71 J(2 + juw) + £T(2 - jw)
= 4e[(4 +w?)

| X (jw)| is as shown in Figure S4.1.
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4.2, (a) Let zy(f) = d(1+ 1) + 6(t — 1). Then the Fourier transform Xy (jw) of =(t) is:
Xy(iw) = f [B(E+ 1) + (¢ = )]e™dr
—50
= o4 =lomsw

| X1 (jw)| is as sketched in Figure 54.2.
(b) The signal z2(t) = u(~2 — £) + ult — 2) is as shown in the figure below. Clearly,

%{u(-a —)bult -2} =6t —2) - 6t +2)
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Therefore, the nonzero Fourier series eoefficients of za(t) are
1 » p Sy g
ag = 1; o = EE‘"“G‘T““ fa_y= EE ¢ i fﬂﬂ -J6=L
From Section 4.2, we know that for periodic signals, the Fourier transform consists of
a train of impulses occurring at kwy. Purthermore, the area under each impulse is 27
times the Fourier series coefficient ag. Therefore, for z3(t), the corresponding Fourier
transform X;(juw) is given by

Xaljw) = 2rapd(w) + 2ma)d{w — wo) + 2may8{w + wo)
= 2xd(w) + we b (w — 6x) + me™ I Bi(w + 67)

4.4.  (a) The inverse Fourier transform is

zi(t)

. i3
(1/27) f_ [278(w) + wb(w = 47) + wd(w + 47)]e? dw

(1/27)[2rne?® + 5™ 4 xe~34Y|
14 (1/2)e 4 (1/2)e™?* = 1 + cos(4nt)

{b) The inverse Fourier transform is
wl) = (1/2%) [ = Xl du

2 0
= ijo 2e""‘dw+(uzar)f_2(—2lc’”'-*—'

= (& = 1)/(xit) - (1 - ) (mjt)
= —(4jsin®t)/(xt)

4.5. From the given information,
o0
z(t) = (!)‘2:).[ X (jw)e dw

= % | X ()<Ko gty
3

= (1/2%) f 26~ Jetreivid,
-3

= ;('1_—?3/"2_)' sin(3(t — 3/2)]

The signal =(t) is zero when 3(t — 3/2) is a nonzero integer multiple of m. This gives
ke 3

g:-2—+§, forkeZ, and k #0.
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Xaljw) = f’ {8(2 — 2) — 6t + 2)]e T"dt
-80
= & WY _ A = 25 sin(2w)

|, (jw)| is as sketched in Figure $4.2.
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Figure 54.2

4.3.  (a) The signal z, (3} = sm{?ﬂ + rr,l’-I] is periodic with a fundamental period of T = 1.
This 1 y of wo = 27. The nonzero Fourier series
coefficients of thns sugnal may be fnunr] by writing it in the form

L iamtan ) _ =j(2ntenga)
2 = 5 (e’ e )

1 1
= s gt _ D —ywfd -yt

% e e % € €

Therefore, the nonzero Fourier series coefficients of =z, (t) are
1 1
= I/ ST —ju 4~ fime
ay % L G-y 23: e

From Section 4.2, we know that for periodic signals, the Fourier transform consists aof
a train of impulses occurring at kwy. Furthermore, the area under each impulse is 27

times the Fourier series coefficient a;. Therefore, for z,(t), the corresponding Fouries
transform X (jw) is given by

Xiljw) = 2maf(w —wyp) + 2ra_ 6w + wy)
(n/3)e/ 48w = 2m) — (=/i)e "Bl + 2m)
(b) The signal zz(t) = 1+cos{6mt+/8) is periodic with a fundamental period of T = 1/3.

]

This t lates to a fund tal fi v of wg = 6x. The nonzero Fourier series
cocfficients of this signal may be Eound by writing it in the form
z(t) = 1+= (,Jimﬂrul s ,—Jtmwm)

1

= 1+ ie""“e"“ + Ee'””e“’“'
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4.6. Through this probk we that

2(t) €5 X, (Gw).
(a) Using the time reversal property (Sec. 4.3.5), we have
(=) &5 X (~jur)
Using the time shifting property (Sec. 4.3.2) on this, we have
2+ 1) e x(—juw)  and  z(—t—1) £5 X (—jw)
Therefore,
() =s(—t+ 1) +x(-t—1) E5 X (—ju) + X (~juw)
& 2x(—jw) cosw
{b) Using the time scaling property (Sec. 4.3.5), we have
23 &5 31X (5%)
Using the time shilting property on this, we have
axt) = 2(3(t - 2)) &5 23X (7%)

(c) Using the differentiation in time property (Sec. 4.3.4), we have

& I, juxiw)

Applying this property again, we have

d=(t) Fr,
ﬂz
Using the time shifting property, we have

—w? X (jw).

z3(t) = ﬁ%;—ll L X (Guw)e i,
4.7.  (a) Since X,(jw) is not conjugat ic, the corresp ng signal 1 (¢) is not real.

Since X, (jw) is neither even nor odd, the corresponding algnnl zy(t) is neither even
nor odd.

(b) The Fourier transform of a real and odd signal is purely imaginary and odd. Therefore,
we may conclude that the Fourier transform of a purely imaginary and odd signal
is real and odd. Since Xo(jw) is real and odd, we may therefore conclude thar the
corresponding signal z2(t) is purely imaginary and odd.
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(c) Consider a signal yy(t) whose magnitude of the Fourier transform is [Ya(jw)| = Alw}
and whose phase of the Fourier transform is a{Ya(jw)} = 2w. Since Yalyw)l =
[¥y(—jw)| and <{Ya(i)} = —<{¥a(-jw)}, we may conclude that the signal ya(t)
is real (See Table 4.1, Property 4.3.3).

Now, copsider the signal z3(t) with Fourier transform Xa(jw) = Ya(jw)e’™? =
i¥aljw). Using the result from the previous paragraph and the linearity property
of the Fourier I we may lude that z3{t) has to imaginary. Since the
Fourier transform X3(jw) is neither purely imaginary nor purely real, the signal z3(t)
is meither even nor odd.

(d) Since Xy(jw) is both real and even, the corresponding signal z4(t) is real and even

4.8.  (a) The signal z(t) is as shown in the Figure 54.8. ¥
A

(DA N (k)

i"/_ .
A W -

-4 ¥y -} CladaEts
Figure S54.8
We may express this signal as
z(t) = f o vlt)dt,

where y(t) is the rectangular pulse shown in Figure 54.8. Using the integration property
of the Fourier transform, we have

() 5 X (jw) = 3.‘3m'w1 + %Y (j0)6(w)

We know from Table 4.2 that
Yi(jw) = 2sin(w/2)
Therefore,

+ wé{w)

xtjo) = 2550 2

(b) If glt) = =(t) — 1/2, then the Fourier transform G/(jw) of g(t) is given by
2sinw/2)

Gliw) = X(w) - (22m6() = =5
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Therefore, the desired result is
FT{0dd part o)) = 55 = T
$.10. (a) We know from Table 4.2 that
% &7, Rectangular function ¥ (jw) [See Figure 54.10]
Therefore
(%)‘ &L, (1/27) [Rectangular function ¥ (jw) » Rectangular function ¥ (7¢1]

This is a triangular function Yi(jw) as shown in the Figure 54.10.
(! e Tiljed

1o b X(jv) -2
[J.j{n{
2 i

Figure 54.10

Using Table 4.1, we may write
sint\”? Fr L TP
t (7‘") 5 X(w) = i =Yilw)
This is as shows in the figure above. X (jw) may be expressed mathematically as
if2m, =2<w<l
X(w) =4 —if2m, 0<w?
0. otherwise

(b) Using Parseval's relation,

= o 4 o
4 [sint ool - 1
f > (_ dt = o= f X G = 55

—oe nt
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4.9. (a) The signal =(t) is plotted in Figure 54.9.
We see that this signal is very similar to the one considered in the previous problem.
In fact we may again express the signal z({) in terms of the rectangular pulse y(t)
shown above as follows

(t) = ‘/—”y(‘]dl - u(t - 3).

Using the result obtained in part (a) of the previous problem, the Fourier eransform
X(jw) of z(t) is
Xy = Saawid)
Ju

+ 78{w) — FT{uft - ']I”

sinw e~

Fuw? Jw

(b) The even part of =(t) is given by

Evlz(t)} = .’_{f)"'zﬁl.
This is as shown in the Figure S4.9.
‘Therefore, :
FT{Ev{z(t)}) = ":”‘

Now the real part of the answer to part (a) is
- +
m{-‘_—} = (1w)Re {i(cosw — jsinw)} =
Jw w

(c) The Fourier transform of the odd part of z(t) is same as j times imaginary part of the
answer to part (a). We have

Im {sinw _gi) _ _sinw | cosw
Jwt gw | W? w
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4.11. We koow that 1 1
L FT L
2(3t) &5 FXUF) ABY D HG)
Therefore,
Glw) = FT{a(3t) » h(3t)} = %xu‘-‘gwug)

Now pote that
Y(jw) = FT{z(t) » h(t)} = X Gw)H(jw)
From this, we may write
L L R
v6y) =X (15) # (73)
Using this in eq. (**), we have
Gliw) = 3Y03)
and 1
glt) = zu(34).
Therefore, A = } and B = 3.
4.12. (a) From Example 4.2 we know that
- g, 2
€ Lo T+o2

Using the differentiation in frequency property, we have
St B T
- jdu{l+u3 T

(b) The duality property states that if

9lt) &5 Gw)
then
G(t) &5 2mgyw).
Now, since @
o) [FT, jw
WS TP

we may use duality to write
45t FT —hd
TR e
Multiplying both sides by j, we obtain
at

A T, coweil
orer — j2mwe” ML
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_- 4.13. (a) Taking the inverse Fourier transform of X (jw), wc obtain
1 1 1
PO SO T S
=(®) 2x + ﬂﬂ'e’ B 2’:"
The signal z(t) is therefore a d with two complex exp ials whose
fundamental frequencies are 2 /5 rad/sec and 2 rad/sec. These two complex expo-
nentials are not harmonically related. That is, the fundamental frequencies of these
pl pl p tials can never be integral multiples of a common fundamen-
tal frequency. Therefore, the sigual is not periodic.
(b) Consider the signal y(t) = z(t) ¢ h{t). From the convolution property, we know that
¥ (jw) = X(jw)H(jw). Also, from h(t), we know that

Hijw) = ¢_""2’mw-
W
The function H(jw) is zero when w = k=, where k is 2 nonzero integer. Therefore,
Y (jw) = X(jw) H(jw) = 8(w) + &(w - 5)
This gives
o 1 L 113

V) = 52+ 5
Therefore, y(t) is a compl p tial d with a ¢ We know that a
complex exponential is periodic. Adding a constant to a complex exponential does not
affect its periodicity. Therefore, y(t) will be a signal with a fundamental frequency of
2 /5.

(c) From the results of parts (a) and (b), we see that the answer is yes.

4.14, Taking the Fourier transform of both sides of the equation
FHO + j0) X (w)} = A2 ul?),
we obtain A § .
x09= e = A{mR W E)
Taking the inverse Fourier transform of the above equation
2(2) = Ae'u(t) - Ae~Mu(t)
Using Parseval's relation, we have

ol o0
f 1X () Pdw = 27 j = (8)?dt
-0 -0
=
Using the fact nmf |X (juw)Pdw = 2, we bave
-0

{- -
f |z(e)%dt = 1

—aa
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We see that G(jw) is periodic with a period of 8. Using the multiplication property,
we know that 1 o
X(o) = = [ﬂ'{%} ‘ G{jw}]

1f we denote FT {%5'} by A(jw), then

Ed

X(w) = (1/2%)[Ajw) ¢ 87 3 §(w - 8K)

k=—00

4 }uf: A(jw = 8k)

k=—o00

X (jw) may thus be viewed as a replication of 44(jw) every 8 rad/sec. This is obviously
periodic.
Using Table 4.2, we obtain

L Wt
AGw) = { 0,  otherwise

Therefore, we may specify X (jw) over one period as

o4 wlgl
““’“’)‘{o, 1<jw<d

4.17. (a) From Table 4.1, we know that a real and odd signal signal z(t) has & purely imaginary
and odd Fourier transform X (jw). Let us now consider the purely imagnary and
odd signal jz(t). Using linearity, we obtain the Fourier transform of this <ignal to
be jX(jw). The function jX (jw) will clearly be real and odd. Therefore the given
statement is false.

(b) An add Fourier Lransform corresponds to an odd signal, while an even Fourier transform
corresponds to an even signal. The convolution of an even Fourier transform with an

odd Fourier may be viewed in the time domain as a multipli of an cven and
odd signal, Such a multiplication will always result in an odd time signal. The Fourer
transform of this odd signal will always be odd. Therefore, the given is true.

4.18. Using Table 4.2, we see that the rectangular pulse 1(t) shown in Figure $4.18 has a Fourier
transform X, {jw) = sin{3w)/w. Using the convolution property of the Fourier transform,
we may write

. ]
FT. . 5 i sin(3w
) = 110 4 1(8) B XaGo) = XiGGui o = (22
The signal 22(t) is shown in Figure 34.18. Using the shifting property, we also note that

- 2
Lot +1) &5 e (’——“‘(M)
2 2 w
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Substituting the previously obtained expression for (¢} in the above equation, we bave
f- [A%e~ ¢ A%~ — 24% Mu(t)dt = |
-

r (A% 4 A2 — 24%Mdt = 1
.:*;12 =1
= A=V12
We choose A to be /12 instead of —/12 because we know that z(t) is non negative.
4.15. Since z(t) is real,
Ev{z(t)} = 2E)+zl ) +;(4) flery Re{X (3w}

We are given that
IFT{Re{X(jw)}} = |tle M.

‘Therefore,
Ev{z(t)} = L"’;"ﬂ _—
We also know that z(t) = 0 for ¢t < 0. This implies that =(—t) is zero for ¢ > 0. We may
conclude that
z(t) = 2tle™™  fort =0
Therefore,

z(t) = 2te " *ult)

4.16. (a) We may write

= sinfkr/4)
z() = .:E_:,Wm ~ kn/fd)
sint e
= ?‘—k’_nIJ(t — kn f4)
Therefore, 9(t) = 3 wé(t — kn/d).
k=—00
(b) Since gt} is an impulse train, its Fourier transform G(jw) is also an impulse train.
From Table 4.2,
I 2rk
Glw) = rmtgwa (w—— *_1'4)
= 8r Y d(w=8k)
km-o0
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and

1 . 2
dmle-1) 5 L (S'_n(:’:-ﬂ) .
2 w
Adding the two above equations, we ohtain
sin(?.u))’

W

he) = %r,(n N+ %z,(r_ 1 .Em(..,)(

The signal h(t) is as shown in Figure S4.18. We note that h(f) has the given Fourier
transform F (jw).

)‘:,(t') I{.Q-J
5z
i R SRE * 9 § Tt
Kit)
sh

e N

-2 -5 o0 5 3 +
Figure 54.18

Mathematically h{t) may be expressed as

5 Itl<1

n=d —3+3 15HsSs
. —$+;, S<jtsT

0, otherwise
4.19. We know that ¥ii
H(jw) = X{é:;

Since it is given that y(t) = e *u(t) — e **u(t), we can compute ¥ {jw) to be

1 1 1

Yjw = ——— - —— = —_—
Gw) I+dw Ad+iw (34 w4+ jw)
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Since, H(jw) = 1/(3 + juw), we have
J ¥{iw) ;
X{jw) = o) = 1/(4 + ju)
Taking the inverse Fourier transform of X (3w), we have
z(t) = e *u(t).

4.20. From the answer to Problem 3.20, we know that the frequency response of the circu 15
1

—w? 4 w1

Breaking this up into partial fractions, we may write

H{jw) =

Hijw) = =L { o A J
W) = —
VB[4 -Bis e b+ 85 4 juw
Using the Fourier transform pairs provided in Table 4.2, we obtain the Fourier ‘ransform

of A(ju) to be
At) = _;Iﬁ [-gl'i“?ﬂ‘-l- +:"§”§’”'] ult).
Simplifying,
hit) = %e'*‘ain(—?l)u(!l-

4.21. (a) The given signal is
e % cos(wot)u(t) = %c"“e’“‘"u(t} + %c'“e'm‘u{t}.

Therefare, ) i
X(w) = - — - - -
Ge) e~ juwo +jw)  2a— juy + ju)

(b) The given signal is

z(t) = e sin(2t)u(t) + ¢* sin(2t)u(~t1).

We bave
—— er Yy
zi(t) = e~ in(2t)u(t) &< Xi(Gw) = x—_—Jm 3-—-—+J2 T
Also,

1/25 1/25

#alt) = e win(2)u(=t) = —zy(~t) &5 Xy(jw) = — X (~jw) = g e e e

Therefore,
3 35

AR AR ) 3 gy e
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(i) Using the Fourier transform analysis eq. (4.9) we obtain
: 1 2e~r 2g~i0_2
Xjw) = 3-; + -:;r - -—-—J—u-T—
() ={t) is periodic with period 2. Therefore,
X(jw) == 3~ X(jkm)s{w — kx),

where X {ju) is the Fourier transform of oge period of z{t). That is,

o 1 1 = g=l43w) e 1 - e"‘“""’]
X(Jw)—l_'e_,[ e T A
b t|<3
422, (a) 2(t) = { ;:' itlt:mm

(b) =(t) = Je~Im/38(¢ = 4) & Jein/24(t 4 4).
(c) The Fourier transform synthesis eq. (4.8) may be written as

=(t) = 5o f_miqule*"”‘-‘"’e’”'d»-

From the given figure we have

_ 1 [sin(t=3) = cos(t—3) -1
s [‘:T*"'{:TEJT”]
(d) #(t) = Zsint + I cos(2nt)
(e} Using the Fourier synthesis equation (4.8),

cosdt  sint - sin2t
Mt
.23 For the given signal zo(t), we use the Fourier transform analysis eq. (4.8) to evaluate the

cor ding Fourier Lransf

1 — g~ (14yw)

b e o

(i) We know that
i(t) = za(t) + zp(~1).

Using the linearity and time reversal properties of the Fourier transform we have

. 2-2.! = Zwe™! si
X1(50) = Xoljw) + Xo(=s) = T

143

(e) Using the Fourier transf lysi: ' {4.9_}“[!“:
X(w) = 2m-m+ Sinw _ sinw
w T=w w4w

(d) Using the Fourier transform analysis (4.9) we bave
. 1
XGw) = ——.
(e) We have
Z(t) = (1/2])te# My (1) - 1 [25)ee ey gy
Therefore,
e MR AP
X~ e T
(f) We have
_sinmt pr . 1, lw] <
aflf= HX;(;:-.-)-{ 0, other:i.'-'e i
2o in2x(t - 1) 2
_ SinZx(t - FT = T || < 2x
=2l == 5 Xalw) = { 0. otherwise
#(t) = 21(0z2(0) € X () = 2= (X () » Xa (o).
Therefore,

il ] < =

(1/2%) (3% + w)e=2-, I Cwe -
(1/27) (3% = w)e3=, #<w<3n

0, otherwise

Xjw) =

(8) Using the Fourier transform analysis eq. (4.9) we obtain

X(w) = 2 [Dus?w— ‘ﬂ]

(h) If
Ll
() = Z &t — 2k),
k=—00
then
T(t) = 22, (t) + z,(t - 1).
Therefore,
X(w) = )2+ e = x 3 bl - km)2 4+ (—1),
kw oo
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{11} We know that

T2(t) = zo(t) — zo(~1).
Using the linearity and time reversal properties of the Fourier transform we have
= ~1 g -
Halie) = Xaljo) = Xo{-gu) =  [24 26" sine + 200 =
14w
{iii) We know that
z3{t) = zo(t) + xg(t + 1).
Using the linearity and time shifting properties of the Fourier traosform we have
. R | -
X3 = Xo(juw) + e Xo(~ju) = L —e7M 1+ em0)
14 jur
{iv) We know that
z4(t) = tza(t).
Using the differentiation in frequency property

Xaw) = 5 2= Xo(50).
Therefore,
. 1-2e~temdw — jupe~le=se
X, =
“Gw) T+ )
4.24. (a) (i) For Re{X(jw)} to be 0, the signal z(¢) must be real and odd. Therefore, signals
in figures () and (c) have this Pproperty.

(it} For Im{X (jw)} to be 0, the signal z(¢) must be real aud even. Therefore, signals
in figures (e) and (f) have this property,

(iii) For there to exist a real @ such that X (juw) is real, we require that z(t + a) be

a real and even signal, Therefore, signals in figures (a), (b), (e), and (f) have this
property.

(iv}Fbrl.h.inmndi:io.nmbe;m. (0) = 0. Y als in ),
(d), 104 (1) have this property. | 1R, signal in figures (), (b), (c)

(v} For this condition to be true the derivative of z(t) has to be zero at ¢ = 0. Therefore,
signals in figures (b), (c), (e), and (f) bave this property.

(vi) For this to be true, the signal z(t) has to be periodic, Ouly the signal in figure (a)
has this property

(b) For a signal to satisfy only properties (i), (iv), and (v}, it must be real and odd, and
z(t) =0, =2'(0) =0,

The signal shown below is an example of that.



1.25. (a) Note that p(f) = z(t + 1) is & real and even signal. Therefore, ¥ (jw) is also real and
Y(jw) = 0. Also, since ¥ (jw) = el¥X(jw), we know that

even. This implies that <
X (jw) = =,
(b) We have

(¢) We have

-t
]

Figure 54.24

X(30) =fm:(t)dt=7.
80

f@ X (jw)dw = 2wz(0) = 4n.

(d) Let ¥ (juw) = 282e¢%w The corresponding signal ylt)is

Then the given integral is

-3t =1
otherwise

wo={

fw X{jw)Y (jw)de = 2x{z(t) » y(t) }i=o = T7
—00

(e) We have

-} o0
f |X () Pde = 27 [ |2(t)["dt = 267

(f) The mverse Fourier transform of Re{X (jw)} is the Ev{z(t}} which is [=(t) + =(=1)}/2.

This is as shown in the figure below. Evinte}

1 e L
73
-3 -2 =1 o g =& 3 ki
Figure 54.25
4.26. (a) () We have
1 1
Y(jw) = X(ju)H[jw):[m] [q—_;};]

a/4) M) (1/2)
A+jw  2+gw (24 5w)?
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(b) The Fourier eeries coefficients o) are

ag =

-'1; f 1r>i(t)c‘*‘ L

<

1,2 oy e
—z-{j:e -"P‘"dtv—Lc k'S

!iﬂ(::){z) a _e-jn}t—ﬂhﬂ

Comparing the answers to parts (a) and (b}, it is clear that

where T = 2.

4.28. (a) From Table 4.2 we know that

1,27k
o = Xl h

plt) = i Pl £ P(jw) = 2x Z axdlw = kwp).

n=-00

From this,

k=—o0

Y() = g {X ()« BGw)} = 3 axX(ilw ~ ko))

k=-00

(b) The spectra are sketched in Figure 54.28.

Taking the inverse Fourier transform we obtain

y(t) = :—c'“n{!) - %:""u(l) “ %tc"""'u[r]

(ii) We have

o = xo09- e]fr

Jw)

(1/4) + (1/4)  _ (1/4) + (1/4)
24w (24 jwP  A+iw (44 ju)?

Taking the inverse Fourier transform we obtain

ylt) = %e-"u(t) + %Ie""u(f} - %c"'u(t) + %:e'“u(z}.

(iii) We have

Y (jw)

= X(w)H(jw)

AR P
1+4jw| |1-jw
1/2 1/2

I+jw+i—jw

Taking the inverse Faurier transform, we obtain

(e) = et

(b} By direct convolution of z(t) with h(t) we obtain

0,
yt) =4 1-e D,
P

t<1
1<t<s

Taking the Fourier transform of y(t),

Y (jw)

4.27. (a) The Fourier transform X (jw) is

[}

1]

26~ gin(2w)

w(l + w)

e~ | ¢~/ sin(2w)
[1 3 J'w] w
X () H (5e)

X(jw) = j_z:(l.‘)c_-"'“d! = j;:e"""dl - ‘[:r"""dl:

" 2‘—-—5“(:"? ) (1 emiwyemitel?

4.29. (i) We have

Xaljw) = | X ()| X072 = X (ju)e 7%

From the time shifting property we know that

za(t) = 2(t

- a).
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Figure 54.28
(iv) We have
Xoljw) = | X (jw)le TN+ o 3= ()™,

(ii) We have

Xyljw) = | X (jw)]ef ¥OMHE = X (u)e™,

From the time shifting property we know that

(iii) We have

() = z(t + b).

Xeljw) = | X (ju)le 7 X0 = X*(jus).

From the conjugation and time reversal properties we know that

z(t) = 2" (=t}

Since =(¢) is real, z.(t) = z(~t).
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From the conjugation, time reversal, and time shilting properties, we know that

24(t) = 2 (~t — d).

Since z(t) is real, zy{t) = z(—t = d).

4.30. (a) We know that

w(t) = cost £ W (jw) = n[8(w — 1) + 8w +1)

and

4(6) = ={t)cost T Gliw) = o (X (i) + W (i)

Therefore,

Gliw) = ;x{j(u 1)+ %xu(m +1)).
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Since Gl jw) hﬂmhfmﬁ-m,ilhdwﬁwthlhnqmion that X (jw)
is as shown in the Figure 54.30.

T&{id} PrERGW
| P B 1]
-1 o 2 w - _:J
Figure 54.30
Therefore, !
0= 2sini
z( —

(b) X;(jw) is as shown in Figure £4.30.
4.31. (a) We have
() = cost &5 X (jw) = wlélw +1) + 6w = D).
(i) We have :
Ry(t) = u(t) &5 Hiljw) = ek wélw).

Therefore, p
Y(jw) = X(juprw) = 18w +1) = blw - ik

Taking the inverse Fourier transform, we obtain
y(t) = sin(e).

(ii) We have

hat) = =28(t) + Se~Mu(t) &5 Ha(jw) = -2+

24 jw
Therefore, -
¥ (jw) = X (jw)Hi(w) = ;[ﬂw +1) = 8w - 1.

Taking the inverse Fourier transform, we obtain

y(t) = sin(t).
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{c) We have )
a2 4
Xa(jw) ={ o et
Ya(jw) = Xy(jw)H (jw) = Xa(jw)e™
This implies that -
yalt) =zt = 1) = ==
We may have obtained the same result by noting that Xs(jw) lies entirely in the
passband of H(jw).
{d) X4(jw) is as shown in Figure 54.32.

480w
r‘l
_'[' ) & i
> HI
-4 ol % _"-Q
Figure 54.32

Therefare,
Yiw) = Xaljw)H (ju) = Xqljw)e™ ™.
This implies that 3
sin(2(t — 1
wl®) =zt —1) = (%)ﬂ :
We may have obtained the same result by noting that X,(jw) lies entirely in the
passband of H(jw).
4.33. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain

g Y (jw) _ 2
Hw) = XGw) —wt+2w+8
Using partial fraction expansion, we obtain

. 1
HG9 = o~ oad
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{iii} We bave )
ha(t) = 2e™*ult) &5 Halj) = o
Therefore, =
Y (jw) = X(jw)H(juw) = E{J(H +1) = 8w = 1}].
Taking the inverse Fourier transform, we obtain
y(t) = sin(t).
(b) An LTI system with impulse response

1
ha(t) = 3 [ () + ha(0)]
will have the same response to £(t) = cos(t). We can find other such impulse responses
by suitably sealing and linearly combining hi(t), h2(t), and hy(t).
4.32. Note that A{t) = hy(t — 1), where
sin 4l
hy(t) = B
The Fourier transform Hy(jw) of hy(t) is as shown in Figure 54.32.

From the above figure it is clear that hy(2) is the impulse response of an ideal lowpass
filter whose passband is in the range fw| < 4. Therefore, h(¢) is the imp I P of an
ideal lowpass filter shifted by one Lo the sight. Using the shift property,

H{jw) = { ;"'"‘ jl <4

otherwise ~

(a) We have
X, (jw) = vl T 8{w — 6) + ned 8w + 6).

It is clear that
Yi(w) = X (jw)H (ju) = 0=y (t) = 0.

This result is equivalent to saying that X;(jw) is zero in the passband of H(jw).

(b) We have
’ 7 [ 1 §
Xa(jw) = 3 Lg(i) {8(w — 3k) — &{w + 3K)}| -
‘Therefore,
Yaliw) = Xalju) H{jes) = } [(1/2){6(w = 3) = b(w + 3)}e ]
This implies that
nlt) = %sin(St- 1).

We may have obtained the same result by noting that only the sinusoid with frequency

3 in Xa(jw) lies in the passhand of H{jw).
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Taking the inverse Fourier transform,
h(t) = e~ Hu(e) — e~ ult).
(b) For the given signal z(t), we have
i g 1
X6r= g

Therefore, ) 3
Y(w) = XGHGw) = a1 8) @+ 00

Using partial fraction expansion, we obtain

oo R o 12 114
YW = S T ot oF T GutdP  qwtd

Taking the inverse Fourier transform,
o) = ;e'nu(!} - Bt () + e u) - Teule).

(c) Taking the Fourier transform of both sides of the given differential equation, we ohtamn
Y{jw) _ 2=’ -1)
X(w) —wt+vZw+l

Using partial fraction expansion, we obtain

H(jw) =

St ~I-2v3 | 2+
H(Jw)—?-i-jw_n :’*"ﬁ+ju—‘"’5‘”'

Taking the inverse Fourier transform,
R = 26(8) = VE(L + 2§)e=UHVBy(t) = VA(L - 24)e™ PV Puge)
4.34. (a) We have
Y A
X(Gw) 6—w?+5jw
Cross-multiplying and taking the inverse Fourier transform, we obtain

Lylt) | dult) _ d=z(t)
Pz + .'s-—&-!- + by(t) = — + dx(t).

(b) We have " :
Hiw) = T+ jw 34w
Taking the inverse Fourier transform we obtain,

hit) = 2eHu(t) — e Hu(t).
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(e} We have ;

Hlju) = “@Er

WLt
4 + juw
Therefore, i
Y(jw) = X (jw)H(jw) = m
Finding the partial fraction expansion of ¥ (jw) and taking the inverse Fourier trans-
form, . i
D T L
yit) = 3¢ u(t) 3¢ uft).

4.35. (a) From the given information,

1 Gl = —m",i,:.i"; =1
at +w

Also, = .

aH(jw) = - tan ™! - —tan™!' = = ~2tan”! =,

a a a

Also,
i} T =al i
Hijw)=-1+ i h{t) = =8(t) + 2ae™""'u(t}
(b) If a = 1, we have
|HGw) =1, <H{jw)=-2tan""a.

Therefore, 2
(1) = coslzz — ) — ooslt = )+ cun(VBe = )

4.36. (a) The frequency response is

Y(w) _ 33+ jw)

B0 = (o) ™ G 59

(b) Finding the partial fraction expansion of answer in part (a) and taking its inverse
Fourier transform, we obtain

h(t) = g e +e % ult).

(e} We have
Y(w) _  (9+35w)
X(w) B+ 6jw—w?’
Cross-multiplying and taking the inverse Fourier transform, we obtain

diylt) | dylt daf¢
;:g} £ 6_,?) +Bylt) = 3""&‘[?]' +9z(t).
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y shift to the analysis equation, we have

4.38, (a) Applying a fi

X(jlw - wp)) = f_m 2(t)e N0l = f_ :x(ueh'e-!“'dc = FT{z(t)e™"}.

(b) We have
w(t) = 9! & W (jw) = 2xd{w — wo)-
Also,
sOul) €5 5o 1XGw) » WGw)
= X(jw) » 8w — wy)
= X(jlw - wo))

4.39. (a) From the Fourier transform analysis equation, we bave

Gliw) = f_ :g(t)e'i”‘d!= f_ :xu:]e"‘“dz. (50401

Also from the Fourier transform synthesis equation, we have
z(t) = lfmx( jw)eduw
i (R :
Switching the variables t and w, we have
1 ’
r(w) = = f_: X (jt)etat.
We may also write this equation as
oo .
2wz (=—w) = j X(jt)e™idt.
-
Substituting this equation in eq. {54.39-1), we obtain
Gliw) = 2xz(-w).

(b) If in part (a) we have z(t) = &(t + B), then we would have g{t) = X(jt) = ¢’ and
G(jw) = 2rz(—w) = né(—w + B) = 2xé(w — B).

4.40. When n = 1, 7, (t) = e~*u(t) and X;(jw) = 1/(a + jw).
When n = 2, z2(t) = te~=tu(t) and Xa(jw) = 1/(a + jw)*.

Now, let us 2ssume that the given statement is true when n = m, thal is,
-1
e~otuft) £ Xp(w) =

™ 1
() = oy T
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4.37. (a) Note that

4.41.

4.42.

z(t) = 2y (t) » 21 (),
Lt { (1,: el < i_m
Also, the Fourier transform X (jw) of 24(t) is

Xi(iw) = 252412

where

Using the convolution property we have
2
X(w) = X)X, () = [z"i;ﬂ] .

(b) The signal £(t) is as shown in Figure $4.37

ALK

/\
SQ.\" :I:

Tk 3 2=t 0ol 12
[
AN Pt
e ¢ % -1 -2 =1 B ' 2 3 4 ré =k
Figure 54.37

{c) One possible choice of g(¢) is as shown in Figure S4.37.
(d) Note that

o . et x - ®
X(jw) = XUW}%.:T-_’:U(“ ~k3N = G(ju]—ikgaé()(w - k3)
This may also be written as

KG) =5 3 Xtrk/abli - K3) = 5 3 GUTk/28Gw - k5)
s

Clearly, this is  possible only if
Giak/2) = X (ixk/2).
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Fornrm+tumuuthediﬂumthlimhﬁqummtywwﬁu.

2mt(8) = 2 (0) D Xpga(u) = g X2

This shows that if we assume that the given statement is true for n = m, then it is true for
n =m+ 1. Since we also shown that the given statement is true for n = 2, we may argue
that it is true for n = 2+ 1 =3, n =3 4+ 1 = 4, and so on. Therefore, the given statement
15 true for any n.

(a) We have

o) = = f: 5= XGw) o Y o) e

-]
_ %f”%[! X[jﬂ}?(j(u—ﬂ)]d&]r‘“‘dw
- -

= %f_:xua) [ai'f_:y(,'{u — B))etdu| &b
(b) Using the frequency shift property of the Fourier transform we bave
E]";j_:.'l’[j(w - 8)) s = eIy (t).
(¢) Combining the results of parts (a) and (b),
o0 = 5[ XGOSy
y{t];—“ f: X(78)e2™de
ylt)z(t).

(t) is a periodic signal with Fourier series coefficients ax. The fundamental frequency of
z(t) is wy = 100 rad/sec. From Section 4.2 we know that the Fourier transform X (jw) of
=(t) is

X(w)= 3 2maxd(w ~ 100k).
k=—ao
(a) Since
() = =(0) eoslnt) T Yif) = H{XG(w = wo)) + X (i + wo)}

we have

Yijw) = = E [aed(w — 100k — wp) + axéw — 100k + wal]

k=-2o

o
= 7Y lo_ablw + 100k — wy) + ard(w — 100k + wo)] (S4.42-1)

k==o0
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l!w=5w,tMntbelaminth=abonsmnhn with k = 5 becomes
xa_gd(w) + masb(w).
Since z(¢) is real, ay = a%,. Therefore, the above expression becomes 2rRefay }d(w),
which is an impulse at w = 0. Note that the inverse Fourier transform of 2xRe{as }d(w)
is g;(t) = Ref{as ). Therefore, we now need to find a H(jw) such that
Yi(iw)H (jw) = Gy{jw) = 2xRe{as}d(w).

We may easily obtain such & H(jw) by noting that the other terms (other than that

for k = 5) in the summation of eq. ($4.42-1) result in impulses al w = 100m, m # 0.

Therefore, we my choose any H (jur) which is zero for w = 100m, wheremn = £1,£2,-+-.
Similarly since

n(®) = 2(8)sinfut) D Yaio) = F{X (e = wn)) = X + o))

we have
Yaljw) = % Y londlw — 100k — wp) = axdlw — 100k + wy)]
k=-oc
= ¥ Z [o_adlw + 100k — wo) = ard(w — 100k + )] (84.42-2)
k=-o0

If wy = 500, then the term in the above summation with k = 5 becomes
® ™
—a_s8{w) — —agdlw).
705 ( 3 (w)

Since z(t) is real, a, = a,. Therefore, the above expression becomes 2xIm{as}é(w),
which is an impulse at w = 0. Note that the inverse Fourier transform of 2xZm {as H{w)
is g2(t) = Tm{as}. Therefore, we now need to find a H{jw) such that

Yaljw)H (jw) = Galiw) = 27Re{as}é(w).

We may easily obtain such a H(jw) by noting that the other terms (other than that
for k = 5) in the summation of eq. (84.42-2) result in impulses at w = 100m, m # 0.
Therefore, we my choose any H (jw) which is zero for w = 100m, where m = 41, 42,---,

(b) An example of a valid H(jw) would be the freq p of an ideal lowpass filter
with passband gain of uaity and cutoff frequency of 50 rad/sec. In this case,
k) = .‘ir“(_wﬂ.
nt
4.43. Since . o
w(t) = cos?t = —-%.
157
Therefore, an LTI system with impul P h(¢) = 16(t) may be used to obtain gt)

4.44.

4.45.

4.46.

from z(t).
(a) Taking the Fourier transform of both sides of the given differential equation, we have
Y ()10 + ju] = X (Gw)[Z(w) ~ 1)
Since, Z(jw) = 5 + 3, we obtain from the above equation
Yiw) 3+ %w
XGw) (1 + w10 + jw)’
(b) Finding the partial fraction expansion of H{jw) and then taking its wnverse Founer
transform we obtain

Hw) =

h(t) = %e"u(l} + !;e"“"u(t']
We have
W)=z eh) =  Y(w) = XGw)H(w).
From Parseval's relation the total energy in y(t) is
[ woae=g- [ " ¥ )i
- L Y .
= o [ IXGoPIEG s
p 1 [wetdf2 . 1 +af2 L=
= e g [ X G)P

1o s Laarrs g2
= ol X( Jwo)l' 8 4 g=I X (Guo)l"A

E

For real z(t), 1X{—jwo)l? = | X (jug)|®. Therefore,
E= LX(uw)PA.

Let g1(t) be the response of Hy(jw) to s(t)cosw,t. Let g2(t) be the response of Hyljw) to
z(t} sinwet, Then, with reference to Figure 4.30,

y(t) = z(t)e“* = z(t) cos w.t + f2(t) sinwel,

and
w(t) = qu(t) + joalt).
Also,
F(t) = emtw(t) = [ooswet — j sinwet]lgs () + Fga(d)]-
Therefore,

Re{f(t)} = qi(t) coswet + ga(t) sinwet,
This is exactly what Figure P4.46 implements.
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we obtain o -
Yi(iw) = xé(w) + EE(U -2} + Ei(@ +2).

Therefore,
n®) = =00 (8) = =) cos?() D> Yalio) = 32 {X(e) # ¥iCe))-
This gives
Yatiu) = SX () + }XGw = 2)) + TXG +2)
X (jw) and Yz(jw) are as shown in Figure 54.43.

X
A
- o v W
X.Gw)
Afy
Aly Al
-3 -z =i d 1 2 3w
AT
Afz
-1 of 1 ‘w
Figure S4.43
Now,
sint A [l 1 Jwj <1
wo =T Ly =5 M,
Also,

a(t) = a(t) » 1a(t) <5 6iw) = Yaljw)¥a(jw).
From Figure S4.43 it is clear that

Gljw) = %xu...-).
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4.47. (a) We bave

helt) = h{l.! +2h[—l}.

Since h(t) is causal, the non-zero portions of h(t) and h(—t) overlap enly at t = 0.

Therefore,
0, t<0
A(t) =4 he(),  t=0 .
2h.(t), t>0
Also, from Table 4.1 we have

he(t) &5 Re{H (ju)}.

(54.47—1)

Given Re{H(jw), we can obtain k,(t). From k(t), we can recover h(t) (and conse-
quently H(jw)) by using eq. (54.47-1). Therefore, H(jw) is completely specified by

Re{H(juw).

(b) If
.

1 1 .
t, 1t
ze"" + 5€

Re{H(jw)} = cost =
then,
helt) = 36+ 1) + 36E=1).

Therefore from eq. (84.47-1),
h{t) = é(t = 1).

(¢) We have

h) = MO +2h(-ljl

Since h(t) is causal, the non-zero portions of A(t) and h(—t) overlap only at t = 0 and

holt) will be zero at ¢ = 0. Therefare,

a, t<
h(l):{unkmwn. t=0 .
2h(t), t>0
Also, from Tahle 4.1 we have
ho(t) 5 Tm{H (juw)).

(54.47-2)

Given Tm(H(jw), we can obtain ho(t). From hy(t), we can recover h(t) except for
t = 0 by using eq. (S4.47-1}. If there are no singularities in h(t) at t = 0, then H(jw)
can be recovered from h(t) even if A(0) is unknown. Therefore H(jw) is completely

specified by Im{H(jw) in this case.
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Hill - .
4.38. (a) Using the multiplication property we have () Let y(t) be the Hilbert transform of =(t) = cos(3¢). Then,

Y (w) = X(jw)H (Gw) = x[6(w — 3) + bw + I)]H(w) = —jxé{w — 3) + gwd{w + 3]
h(t) = h{thu(t) & H{jw) = 5 {H()w) . [ + rﬂw]]}

Therefore,
The right-hand side may be written as ylt) = sin(3t).
e 1 o o 4.49. (a) (i) Since H(jw) is real and even, h(¢) is also real and even.
H{jw) = EH(}w] + E-E [H{Ju] v w] 4 P
That is 1 /= 1 /=
' At = | = jua)er & | H G .
i = & [0 @l = | [ HtGeran| < 5o [ 1)
Breaking up H(jw) into real and imaginary parts, Since H(jw) is real and positive,
. 1 (™ Hp(ny 4 gHiln) L [ Hilin) - sHnim) A g
Hpljw) + 3Hjw) = “—jf_w—ﬂ%&—t“—'dn? = _m-—“j__T—---I- dn (8] = h_f_mﬁ(ga.:)e’“‘du = h{0).
Comparing real and imaginary parts on both sides, we obtain Therefore,
max(|A()]] = A[0].
Hi(im) 1% Helm)
Hrliw) = 'f Srdy wd  EiGu)==0f S 9 (b) The bandwidth of this system is 2W.
: (c) We have
(B) From eq. (P4.48-3], we may writs By H(j0) = Area under H{(jw).
o=zt~ = Ylw) = XGu)FT{/(xt) Therefore,
= (S4.48-1) o B f” H{jw)dw
a7 A
Also, from Table 4.2
b
ult) E5 2 + #6(w). (d) We have
g " o H{j0) 27

s(m) _
Therefore, i
2u(t) -1 &5 2‘1_%. T O T } H{jw)dw g; f Hiw)d v

Using the duality property, we have

(e) Therefore,
Bty = B.,-— = 2n.

3,2? Pl 2x[2u(—w) = 1] B
or 1 4.50. (n) We know from problems 1.45 and 2.67 that
FY _
= jlon(—w) = 1). T A
Therefore, from eq.(54.48-1), we have i
¥ (ju) = X (jw)H(jw) Bayliea) = Pyz(—iw).
Since dyz(f) is real,
where S e s
A = out-w) =1 = { 77 nEY Bay () = B3 (G0)-
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f) Wi i
(b) We may write (f) We require that - T
bntt) = [ 4 Piutrdr = 2(0) + =0 G = S

The possible causal and stable choices for H(jw) are

‘Therefore,
Payliw) = X ()Y (—jw). o 104 jw 10 — juw
Hijwfj=—— and Hljuw)= i
S+ jw 54w

Since y(t} is real, we may write this as

Bayljw) = X ()Y (). The corresponding impulse responses are

- -5 - ¢
(€) Using the results of past (b) with y(t) = =(t), I(f) = 5(0) +5e7u(t)  and  ha(t) = =8(¢) + 15e~ul)

g ljw) = X(Gu)X*(jw) = | X (jw)l* 2 0. Only the sy with impul P hy(t) has a causal and stable inverse.
51. (a) H{jw) = 1/G(jw).
(d) From part (b) we have (b) (i) If we denote the output by y(t), then we have
¢=y(3'l‘-'} = X[)‘“)Y.U—W} .
= XGo)HG)X G Yo =3
= bpe(w)H (jw) Since H(j0) = 0, it is impossible for us to have ¥ (;0) = X(30)H({j0). Therefore,
) we cannot find an z(t) which produces an output which looks like Figure P4.50.
Also, (i) This system is not invertible because 1/H(jw) is not defined for all w.
D, (iw) = Y(w)Y (iw) (¢) We have
= [HG)XG)HEG)X Gl P S
_ @“{jw)[ff[ju)i’ H{jw) ?;.f AT =ik ——

We now need to find a G(jw) such that

{e) From the given information, we have
H(jw)G(jw) = 1.

=1, e
X(uw) = e = i — : :
w w Thus G{jw) is the inverse system of H(jw), and is given by
and : s
g ros Gljw) =1 = e~ 1 +9IT,
H(jw) = a+jw
(d) Since H{jw) = 2 + jw,
Thepke _ . 2-2cosw 2sinw 1 P s S T
&, 0w = 1 XGW) = ot '___w'r-+ e’ X{Jw} 2 + Jw
y —2cosw 2sinw | 1 1 Cross-multiplying and taking the inverse Fourier transform, we obtain
Suytiu) = BuslidH"G) = |0 = <=+ | o= dy(t)
*’ +29(8) = =(8).
and
g 2-2¢osw 2sinw 1 1 b
Brptio) = uGlH G = [ - 25554 3=l (fy e R
H{jw) = —————.
—w? + 6w+ 9
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Therefore, the frequency resg of the inverse is

- 1 —w? + 6w+ 9
Glw) = AQw)  —w?+3jw+2
The differential equation describing the inverse system is
dylt) | dut)
= T
Using partial fraction expansion followed by application of the inverse Fourier trans-
form, we find the impulse responses to be

() = 5(t) = 3~ Hu(t) + 2te™u(t)

+ 2y(t) = f% + 61':.{Tt) + 9z(t).

and
g(t) = &(t) — e~ Hult) + e~ u(t).

4.52. (a) Since the step response is s(t) = (1 — e~4?)u(t), the impulse response has to be
1
=1 -
h(g) = ze~/Aul).

The frequency response of the system is

. 1/2
H{jw) = T+ =

We now desire to build an inverse for the above system. Therefore, the frequency
response of the inverse system has to be

Cliw) = ﬁ)— =?[%+ju] "
Taking the inverse Fourier transform we ohtain
g(t) = 8(t) + 2u 2).
(b) When sin(wt) passes through the inverse system, the cutput will be
y(t) = sin{wt) + 2w cos(wt).

We see that the output is directly proportional to w. Therefore, as w increases, the
contribution to the output due to the noise also increases.

(¢) In this case we require that |H(jw)| € 4 when w = 6. Since
1
: 2
IHGF =

we require that

1 1
a® + 36 BT
Therefore, a £ ﬁ—‘
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Therefore,
1 1
X{wn wn)

+ - - -
(2% 51 + jun) (2 + Jwr — Jua) | (2+ Jwa)(2 4 jun + Jun)
1 1

BT @ + Jor —dwn) | @ g — Jn - ju)
2 1

B o = e @ — g + gwn) | G2 — Jun — 1)

(d) =ty 13) = e+ 20)y(e, + 23)
(e) (i) e Tre T X (jun, jws)
i) X (S.9%)

{iif) X (g, Jua) H (jun, jon)
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4.53. (a) From the given definition we obtain
-3
X(wi, jwe) = f F,,(11‘iz)ﬂ—i(um-hnnld"dt,
- -

f’ U‘ z(ty, hk"'"‘d‘l] eTItige,

X (w, tp)e gty
e

]

{b) From the result of part (a) we may write

80
z(ty, 1) = FToHFTIH X Gun, jun)}) = é[ f’ X (o ju )0 430 s iy

(€) () XGuwn,wa) = Ty Ty

i : _ [leeUse|1omtizae)] [ e (i) T o ]
(ii) X (jwi,w2) = (E3rNI(E) * u”u,;{‘u;mi
ey . o 3_,—0*1-»:I_,-cH-MI_1|_,-tlc:-|\m_c-{lu-n_14_
(ki) XIU-::‘:::{I— PLGED.CER) ’
— - -z w3
-“+;UI ﬂi‘-mi & -July Juy
» _ 1 [etmaiegiteital)peivai—emdi tnd
(iv) X{wr,w2) = — 555 |© = -:ln-:*-r:): L
+v“il\-z"‘l""”)-l—t““‘[{""'!"‘”—1)
=3l —wn)
(v) As shown in the Figure $4.53, this signal has six different regions in the (ti, )

plane, @ é;

®|@
Figure 34.33
The signal z(t),3) is given by

e~ in region 1
e in region 2

et in region 3
() = edfa in :g'un 4
el in region 5
e~ in region 6
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Chapter 5 Answers )
5.1. () Let zfn] = (1/2)"'uln - 1]. Using the Fourier transform analysis equation (5.9), the
Fourier transform X (e™) of this sigoal is

Z z[nje™ "

n=—00

= Y (2te

m=l

o
- Z(Uz]"ﬂ""{“u
n=0

X(e™)

T TaUS |
(1 - (1/2)e¥)

(b) Let z[n] = {1/2)I"Y. Using the Fourier transform analysis equation (5.9), the Fourier

transform X (/) of this signal is
o0
X(e¥) = z [nje "
Il.o—ﬂ .
= 3 (et S ale
n=—-o0 n=1

The second summation in the right-hand side of the above equation is exactly the same
as the result of part (a). Now,

o e
~(a-1)g=sum _ (n41)giom o (1 !
ﬂ:,i;”llfz} e gufz) & (z)l-u,rz}ew'
Therefore,

_ (X i =i 1 _ 07570
X (2) T—(/me ¢ ’ (1—(1/2)e-7) ~ 1.25 - cosw’

5.2, (a) Let z[n] = 8[n — 1] + 8{n + 1]. Using the Fourier transform analysis equation (5.9, the
Fourier transform X (&) of this signal is

o0
X(e) = 2 z|n)e "
n=-00
= e 4 e =2c08w
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