Therefore, the frequency response of the inverse is

$$G(j\omega) = \frac{1}{H(j\omega)} = \frac{-\omega^2 + 6j\omega + 9}{-\omega^2 + 3j\omega + 2}$$

The differential equation describing the inverse system is

$$\frac{d^2y(t)}{dt} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{d^2x(t)}{dt} + 6\frac{dx(t)}{dt} + 9x(t).$$

Using partial fraction expansion followed by application of the inverse Fourier transform, we find the impulse responses to be

$$h(t) = \delta(t) - 3e^{-3t}u(t) + 2te^{-3t}u(t)$$

and

$$g(t) = \delta(t) - e^{-2t}u(t) + 4e^{-t}u(t)$$

4.52. (a) Since the step response is $s(t) = (1 - e^{-t/2})u(t)$, the impulse response has to be

$$h(t) = \frac{1}{2}e^{-t/2}u(t).$$

The frequency response of the system is

$$H(j\omega) = \frac{1/2}{\frac{1}{2} + j\omega}.$$

We now desire to build an inverse for the above system. Therefore, the frequency response of the inverse system has to be

$$G(j\omega) = \frac{1}{H(j\omega)} = 2\left[\frac{1}{2} + j\omega\right].$$

Taking the inverse Fourier transform we obtain

$$g(t) = \delta(t) + 2u_1(t).$$

(b) When sin(ωt) passes through the inverse system, the output will be

$$y(t) = \sin(\omega t) + 2\omega \cos(\omega t).$$

We see that the output is directly proportional to ω . Therefore, as ω increases, the contribution to the output due to the noise also increases.

(c) In this case we require that $|H(j\omega)| \leq \frac{1}{4}$ when $\omega = 6$. Since

$$|H(j\omega)|^2 = \frac{1}{a^2 + \omega^2}$$

we require that

$$\frac{1}{a^2 + 36} \le \frac{1}{16}$$

Therefore, $a \le \frac{6}{\sqrt{15}}$

165

Therefore,

- (d) $x(t_1, t_2) = e^{-4(t_1+2t_2)}u(t_1+2t_2)$
- (e) (i) $e^{-j\omega_1T_1}e^{-j\omega_2T_2}X(j\omega_1,j\omega_2)$
 - (ii) $\frac{1}{|ab|}X(j\frac{\omega_1}{a},j\frac{\omega_2}{b})$
 - (iii) $X(j\omega_1, j\omega_2)H(j\omega_1, j\omega_2)$

4.53. (a) From the given definition we obtain

$$\begin{array}{lll} X(j\omega_{1},j\omega_{2}) & = & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x(t_{1},t_{2})e^{-j(\omega_{1}t_{1}+\omega_{2}t_{2})}dt_{1}dt_{2} \\ & = & \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(t_{1},t_{2})e^{-j\omega_{1}t_{1}}dt_{1} \right]e^{-j\omega_{2}t_{2}}dt_{2} \\ & = & \int_{-\infty}^{\infty} X(\omega_{1},t_{2})e^{-j\omega_{2}t_{2}}dt_{2} \end{array}$$

(b) From the result of part (a) we may write

$$x(t_1,t_2) = \mathcal{FT}_{\omega_1}^{-1}\{\mathcal{FT}_{\omega_2}^{-1}\{X(j\omega_1,j\omega_2)\}\} = \frac{1}{4\pi^2}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}X(j\omega_1,j\omega_2)e^{j(\omega_1t_1+\omega_2t_2)}d\omega_1d\omega_2$$

 $\begin{array}{ll} \text{(c)} & \text{(i)} & X(j\omega_1,\omega_2) = \frac{e^{-(1+j\omega_1)}e^{2(2-j\omega_2)}}{(1+j\omega_1)(2-j\omega_2)} \\ & \text{(ii)} & X(j\omega_1,\omega_2) = \frac{\left[1-e^{-(1+j\omega_1)\right]\left[1-e^{-(1-j\omega_2)}\right]}{(1+j\omega_1)(1-j\omega_2)} + \frac{\left[1-e^{-(1+j\omega_1)\right]\left[1-e^{-(1+j\omega_2)}\right]}{(1+j\omega_1)(1+j\omega_2)} \\ & \text{(iii)} & X(j\omega_1,\omega_2) = \frac{2-e^{-(1+j\omega_1)}-e^{-(1+j\omega_1)\left[1-e^{-(1+j\omega_2)}\right]\left[1-e^{-(1+j\omega_2)}\right]}{(1+j\omega_1)(1+j\omega_2)} + \end{array}$

(iii) $X(y\omega_1, \omega_2) = \frac{1}{1-e^{-(1+j\omega_2)}} \frac{(1+j\omega_1)(1+j\omega_2)}{(1+j\omega_1)(1+j\omega_2)}$ $\frac{1}{(1+j\omega_1)(1-j\omega_2)} + \frac{1}{(1-j\omega_1)(1+j\omega_2)} \frac{1}{(1+j\omega_2)(1+j\omega_2)}$ (iv) $X(\omega_1, \omega_2) = -\frac{1}{j-2} \left[\frac{e^{-j\omega_2}(1-e^{j(\omega_1+\omega_2)})+e^{j\omega_2}(1-e^{-j(\omega_1+\omega_2)})}{-j(\omega_1-\omega_2)} + \frac{e^{j\omega_2}(1-e^{j(\omega_1-\omega_2)})+e^{-j\omega_2}(e^{-j(\omega_1-\omega_2)}-1)}{-j(\omega_1-\omega_2)} \right]$ (v) As shown in the Figure S4.53, As shown in the (t_1, t_2)

The signal $x(t_1, t_2)$ is given by

$$x(t_1,t_2) = \begin{cases} e^{-2t_1}, & \text{in region 1} \\ e^{-2t_2}, & \text{in region 2} \\ e^{2t_2}, & \text{in region 3} \\ e^{2t_3}, & \text{in region 4} \\ e^{2t_1}, & \text{in region 5} \\ e^{2t_2}, & \text{in region 5} \end{cases}$$

166

Chapter 5 Answers

(a) Let z[n] = (1/2)ⁿ⁻¹u[n - 1]. Using the Fourier transform analysis equation (5.9), the Fourier transform X(e^{jω}) of this signal is

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$= \sum_{n=1}^{\infty} (1/2)^{n-1}e^{-j\omega n}$$

$$= \sum_{n=0}^{\infty} (1/2)^n e^{-j\omega(n+1)}$$

$$= e^{-j\omega} \frac{1}{(1-(1/2)e^{-j\omega})}$$

(b) Let x[n] = (1/2)^[n-1]. Using the Fourier transform analysis equation (5.9), the Fourier transform X(e^{jω}) of this signal is

$$\begin{array}{rcl} X(e^{j\omega}) & = & \displaystyle \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \\ & = & \displaystyle \sum_{n=-\infty}^{0} (1/2)^{-(n-1)}e^{-j\omega n} + \sum_{n=1}^{\infty} (1/2)^{n-1}e^{-j\omega n} \end{array}$$

The second summation in the right-hand side of the above equation is exactly the same as the result of part (a). Now,

$$\sum_{n=-\infty}^0 (1/2)^{-(n-1)} e^{-j\omega n} = \sum_{n=0}^\infty (1/2)^{(n+1)} e^{j\omega n} = \left(\frac{1}{2}\right) \frac{1}{1-(1/2)e^{j\omega}}.$$

Therefore,

$$X(e^{j\omega}) = \left(\frac{1}{2}\right) \frac{1}{1 - (1/2)e^{j\omega}} + e^{-j\omega} \frac{1}{(1 - (1/2)e^{-j\omega})} = \frac{0.75e^{-j\omega}}{1.25 - \cos\omega}$$

(a) Let $x[n] = \delta[n-1] + \delta[n+1]$. Using the Fourier transform analysis equation (5.9), the Fourier transform $X(e^{j\omega})$ of this signal is

$$\begin{array}{lcl} X(e^{j\omega}) & = & \displaystyle\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \\ \\ & = & e^{-j\omega} + e^{j\omega} = 2\cos\omega \end{array}$$

(b) Let x[n] = δ[n+2] - δ[n-2]. Using the Fourier transform analysis equation (5.9), the Fourier transform X(e^ω) of this signal is

$$\begin{array}{lcl} X(e^{j\omega}) & = & \displaystyle\sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \\ \\ & = & e^{2j\omega} - e^{-2j\omega} = 2j\sin(2\omega) \end{array}$$

5.3. We note from Section 5.2 that a periodic signal x[n] with Fourier series representation

$$x[n] = \sum_{k=< N>} a_k e^{jk(2\pi/N)n}$$

has a Fourier transform

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$$

(a) Consider the signal $x_1[n] = \sin(\frac{\pi}{3}n + \frac{\pi}{4})$. We note that the fundamental period of the signal $x_1[n]$ is N = 6. The signal may be written as

$$x_1[n] = (1/2j)e^{j(\frac{\pi}{3}n + \frac{\pi}{4})} - (1/2j)e^{-j(\frac{\pi}{3}n + \frac{\pi}{4})} = (1/2j)e^{j\frac{\pi}{4}}e^{j\frac{2\pi}{6}n} - (1/2j)e^{-j\frac{\pi}{4}}e^{-j\frac{2\pi}{6}n}$$

From this, we obtain the non-zero Fourier series coefficients a_k of $x_1[n]$ in the range $-2 \le k \le 3$ as $a_1 = (1/2j)e^{j\frac{\pi}{4}}, \quad a_{-1} = -(1/2j)e^{-j\frac{\pi}{4}}.$

 $a_1 = (1/2j)e^{-x}, \quad a_{-1} = -(1/2j)e^{-x}$

Therefore, in the range $-\pi \le \omega \le \pi$, we obtain

$$\begin{array}{lll} X(e^{j\omega}) & = & 2\pi\alpha_1\delta(\omega-\frac{2\pi}{6}) + 2\pi\alpha_{-1}\delta(\omega+\frac{2\pi}{6}) \\ & = & (\pi/j)\{e^{j\pi/4}\delta(\omega-2\pi/6) - e^{-j\pi/4}\delta(\omega+2\pi/6)\} \end{array}$$

(b) Consider the signal $x_2[n] = 2 + \cos(\frac{\pi}{6}n + \frac{\pi}{8})$. We note that the fundamental period of the signal $x_1[n]$ is N = 12. The signal may be written as

$$x_1[n] = 2 + (1/2)e^{j(\frac{\pi}{8}n + \frac{\pi}{8})} + (1/2)e^{-j(\frac{\pi}{8}n + \frac{\pi}{8})} = 2 + (1/2)e^{j\frac{\pi}{8}}e^{j\frac{2\pi}{12}n} + (1/2)e^{-j\frac{\pi}{8}}e^{-j\frac{2\pi}{12}n}$$

From this, we obtain the non-zero Fourier series coefficients a_k of $x_2[n]$ in the range $-5 \le k \le 6$ as

 $a_0 = 2$, $a_1 = (1/2)e^{j\frac{\pi}{8}}$, $a_{-1} = (1/2)e^{-j\frac{\pi}{8}}$

Therefore, in the range $-\pi \le \omega \le \pi$, we obtain

$$\begin{array}{lll} X(e^{j\omega}) & = & 2\pi a_0 \delta(\omega) + 2\pi a_1 \delta(\omega - \frac{2\pi}{12}) + 2\pi a_{-1} \delta(\omega + \frac{2\pi}{12}) \\ & = & 4\pi \delta(\omega) + \pi \{e^{j\pi/8} \delta(\omega - \pi/6) + e^{-j\pi/8} \delta(\omega + \pi/6)\} \end{array}$$

169

Using the time shifting property (Sec. 5.3.3) on this, we have

$$x[-n+1] \stackrel{FT}{\longleftrightarrow} e^{-j\omega n} X(e^{-j\omega})$$
 and $x[-n-1] \stackrel{FT}{\longleftrightarrow} e^{j\omega n} X(e^{-j\omega})$

Therefore

$$\begin{aligned} x_1[n] &= x[-n+1] + x[-n-1] &\overset{FT}{\longleftarrow} & e^{-j\omega n} X(e^{-j\omega}) + e^{j\omega n} X(e^{-j\omega}) \\ &\overset{FT}{\longleftarrow} & 2X(e^{-j\omega}) \cos \omega \end{aligned}$$

(b) Using the time reversal property (Sec. 5.3.6), we have

$$x[-n] \stackrel{FT}{\longleftrightarrow} X(e^{-y\omega})$$

Using the conjugation property on this, we have

$$x^*[-n] \stackrel{FT}{\longleftrightarrow} X^*(e^{j\omega})$$

Therefore,

$$x_2[n] = (1/2)(x^{\bullet}[-n] + x[n]) \quad \stackrel{FT}{\longleftarrow} \quad (1/2)(X(e^{j\omega}) + X^{\bullet}(e^{j\omega}))$$

$$\stackrel{FT}{\longleftarrow} \quad \mathcal{R}e\{X(e^{j\omega})\}$$

(c) Using the differentiation in frequency property (Sec. 5.3.8), we have

$$nx[n] \stackrel{FT}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}$$

Using the same property a second time,

$$n^2x[n] \stackrel{FT}{\longleftrightarrow} -\frac{d^2X(e^{j\omega})}{d\omega^2}$$

Therefore

$$x_3[n] = n^2 x[n] - 2nx[n] + 1 \stackrel{FT}{\longleftrightarrow} -\frac{d^2 X(e^{j\omega})}{d\omega^2} - 2j \frac{dX(e^{j\omega})}{d\omega} + X(e^{j\omega})$$

5.7. (a) Consider the signal $y_1[n]$ with Fourier transform

$$Y_1(e^{j\omega}) = \sum_{k=1}^{10} \sin(k\omega).$$

We see that $Y_1(e^{j\omega})$ is real and odd. From Table 5.1, we know that the Fourier transform of a real and odd signal is purely imaginary and odd. Therefore, we may say that the Fourier transform of a purely imaginary and odd signal is real and odd. Using this observation, we conclude that $y_1[n]$ is purely imaginary and odd.

Note now that

$$X_1(e^{j\omega})=e^{-j\omega}Y_1(e^{j\omega}).$$

Therefore, $x_1[n] = y_1[n-1]$. Therefore, $x_1[n]$ is also purely imaginary. But $x_1[n]$ is neither even nor odd.

5.4. (a) Using the Fourier transform synthesis equation (5.8).

$$\begin{array}{lll} x_1[n] & = & (1/2\pi) \int_{-\pi}^{\pi} X_1(e^{j\omega}) e^{j\omega n} d\omega \\ \\ & = & (1/2\pi) \int_{-\pi}^{\pi} \left[2\pi \delta(\omega) + \pi \delta(\omega - \pi/2) + \pi \delta(\omega + \pi/2) \right] e^{j\omega n} d\omega \\ \\ & = & e^{j0} + (1/2) e^{j(\pi/2)n} + (1/2) e^{-j(\pi/2)n} \\ \\ & = & 1 + \cos(\pi n/2) \end{array}$$

(b) Using the Fourier transform synthesis equation (5.8),

$$\begin{array}{lcl} x_2[n] & = & (1/2\pi) \int_{-\pi}^{\pi} X_2(e^{j\omega}) e^{j\omega n} d\omega \\ \\ & = & -(1/2\pi) \int_{-\pi}^{0} 2j e^{j\omega n} d\omega + (1/2\pi) \int_{0}^{\pi} 2j e^{j\omega n} d\omega \\ \\ & = & (j/\pi) \left[-\frac{1-e^{-jn\pi}}{jn} + \frac{e^{jn\pi}-1}{jn} \right] \\ \\ & = & -(4/(n\pi)) \sin^2(n\pi/2) \end{array}$$

5.5. From the given information,

$$\begin{split} x[n] &= (1/2\pi) \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \\ &= (1/2\pi) \int_{-\pi}^{\pi} |X(e^{j\omega})| e^{j\sqrt{4}\{X(e^{j\omega})\}} e^{j\omega n} d\omega \\ &= (1/2\pi) \int_{-\pi/4}^{\pi/4} e^{-\frac{3}{2}\omega} e^{j\omega n} d\omega \\ &= \frac{\sin(\frac{\pi}{4}(n-3/2))}{\pi(n-3/2)} \end{split}$$

The signal x[n] is zero when $\frac{\pi}{4}(n-3/2)$ is a nonzero integer multiple of π or when $|n| \to \infty$. The value of $\frac{\pi}{4}(n-3/2)$ can never be such that it is a nonzero integer multiple of π . Therefore, x[n] = 0 only for $n = \pm \infty$.

5.6. Throughout this problem, we assume that

$$x[n] \stackrel{FT}{\longleftrightarrow} X_1(e^{j\omega})$$

(a) Using the time reversal property (Sec. 5.3.6), we have

$$x[-n] \stackrel{FT}{\longleftrightarrow} X(e^{-j\omega})$$

170

- (b) We note that X₂(e^{jω}) is purely imaginary and odd. Therefore, x₂[n] has to be real and odd.
- (c) Consider a signal y₃[n] whose magnitude of the Fourier transform is |Y₃(e^{jω})| = A(ω), and whose phase of the Fourier transform is ⊲{Y₃(e^{jω})} = −(3/2)ω. Since |Y₃(e^{jω})| = |Y₃(e^{-jω})| and ⊲{Y₃(e^{jω})} = −⊲{Y₃(e^{-jω})}, we may conclude that the signal y₃[n] is real (See Table 5.1, Property 5.3.4).

Now, consider the signal $x_3[n]$ with Fourier transform $X_3(e^{j\omega}) = Y_3(e^{j\omega})e^{jx} = -Y_3(j\omega)$. Using the result from the previous paragraph and the linearity property of the Fourier transform, we may conclude that $x_3[n]$ has to real. Since the Fourier transform $X_3(e^{j\omega})$ is neither purely imaginary nor purely real, the signal $x_3[n]$ is neither even nor odd.

5.8. Consider the signal

$$x_1[n] = \begin{cases} 1, & |n| \le 1 \\ 0, & |n| > 1 \end{cases}$$

From Table 5.2, we know that

$$x_1[n] \stackrel{FT}{\longleftrightarrow} X_1(e^{j\omega}) = \frac{\sin(3\omega/2)}{\sin(\omega/2)}$$

Using the accumulation property (Table 5.1, Property 5.3.5), we have

$$\sum_{k=-\infty}^{n} x_1[k] \stackrel{FT}{\longleftrightarrow} \frac{1}{1-e^{-j\omega}} X_1(e^{j\omega}) + \pi X_1(e^{j0}) \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$

Therefore, in the range $-\pi < \omega \le \pi$.

$$\sum_{k=-\infty}^{n} x_1[k] \stackrel{FT}{\longleftrightarrow} \frac{1}{1-e^{-j\omega}} X_1(e^{j\omega}) + 3\pi\delta(\omega).$$

Also, in the range $-\pi < \omega \le \pi$,

$$1 \stackrel{FT}{\longleftrightarrow} 2\pi\delta(\omega)$$

Therefore, in the range $-\pi < \omega \le \pi$,

$$z[n] = 1 + \sum_{k=-\infty}^{n} z_1[k] \stackrel{FT}{\longleftrightarrow} \frac{1}{1 - e^{-j\omega}} X_1(e^{j\omega}) + 5\pi\delta(\omega).$$

The signal x[n] has the desired Fourier transform. We may express x[n] mathematically as

$$x[n] = 1 + \sum_{k = -\infty}^{n} x_1[k] = \left\{ \begin{array}{ll} 1, & n \leq -2 \\ n + 3, & -1 \leq n \leq 1 \\ 4, & n \geq 2 \end{array} \right.$$

5.9. From Property 5.3.4 in Table 5.1, we know that for a real signal x[n],

$$Od\{x[n]\} \stackrel{FT}{\longleftrightarrow} jIm\{X(e^{j\omega})\}$$

From the given information,

$$j\mathcal{I}m\{X(e^{j\omega})\} = j\sin\omega - j\sin2\omega$$
$$= (1/2)(e^{j\omega} - e^{-j\omega} - e^{2j\omega} + e^{-2j\omega})$$

Therefore.

erefore,
$$Od\{x[n]\} = \mathcal{IFT}\{j\mathcal{I}m\{X(e^{j\omega})\}\} = (1/2)(\delta[n+1] - \delta[n-1] - \delta[n+2] + \delta[n-2])$$

We also know that

$$Od\{x[n]\} = \frac{x[n] - x[-n]}{2}$$

and that x[n] = 0 for n > 0. Therefore,

$$x[n] = 2\mathcal{O}d\{x[n]\} = \delta[n+1] - \delta[n+2],$$
 for $n < 0$.

Now we only have to find x[0]. Using Parseval's relation, we have

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} |X(e^{j\omega})|^2 d\omega = \sum_{n=-\infty}^{\infty} |x[n]|^2.$$

From the given information, we can write

$$3 = (x[0])^2 + \sum_{n=0}^{-1} |x[n]|^2 = (x[0])^2 + 2$$

This gives $x[0] = \pm 1$. But since we are given that x[0] > 0, we conclude that x[0] = 1. Therefore,

 $x[n] = \delta[n] + \delta[n+1] - \delta[n+2].$

5.10. From Table 5.2, we know that

$$\left(\frac{1}{2}\right)^n \mathbf{u}[n] \stackrel{FT}{\longleftrightarrow} \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

Using Property 5.3.8 in Table 5.1,

$$x[n] = n\left(\frac{1}{2}\right)^n u[n] \stackrel{FT}{\longleftrightarrow} X(e^{j\omega}) = j\frac{d}{d\omega} \left\{\frac{1}{1 - \frac{1}{2}e^{-j\omega}}\right\} = \frac{\frac{1}{2}e^{-j\omega}}{(1 - \frac{1}{2}e^{-j\omega})^2}$$

Therefore,

$$\sum_{n=-\infty}^{\infty} n \left(\frac{1}{2}\right)^n = \sum_{n=-\infty}^{\infty} x[n] = X(e^{j0}) = 2$$

173

The plot of $\mathcal{FT}\left\{\frac{\sin(\omega_c n)}{\pi n}\right\}$ is shown in Figure S5.12. It is clear that if $Y(e^{j\omega})=X_2(e^{j\omega})$, then $(\pi/2)\leq \omega_c\leq \pi$.

5.13. When two LTI systems are connected in parallel, the impulse response of the overall system is the sum of the impulse responses of the individual systems. Therefore,

$$h[n] = h_1[n] + h_2[n].$$

Using the linearity property (Table 5.1, Property 5.3.2),

$$H(e^{j\omega})=H_1(e^{j\omega})+H_2(e^{j\omega})$$

Given that $h_1[n] = (1/2)^n u[n]$, we obtain

$$H_1(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

Therefore,

$$H_2(e^{j\omega}) = \frac{-12 + 5^{-j\omega}}{12 - 7e^{-j\omega} + e^{-2j\omega}} - \frac{1}{1 - \frac{1}{2}e^{-j\omega}} = \frac{-2}{1 - \frac{1}{4}e^{-j\omega}}$$

Taking the inverse Fourier transform,

$$h_2[n] = -2\left(\frac{1}{4}\right)^n u[n].$$

5.14. From the given information, we have the Fourier transform $G(e^{j\omega})$ of g[n] to be

$$G(e^{j\omega})=g[0]+g[1]e^{-j\omega}$$

Also, when the input to the system is $x[n] = (1/4)^n u[n]$, the output is g[n]. Therefore

$$H(e^{j\omega}) = \frac{G(e^{j\omega})}{X(e^{j\omega})}$$

From Table 5.2, we obtain

$$X(e^{j\omega}) = \frac{1}{1 - \frac{1}{4}e^{-j\omega}}.$$

Therefore,

retore,
$$H(e^{j\omega}) = \{g[0] + g[1]e^{-j\omega}\}\{1 - \frac{1}{4}e^{-j\omega}\} = g[0] + \{g[1] - \frac{1}{4}g[0]\}e^{-j\omega} - g[1]e^{-2j\omega}\}$$

Clearly, h[n] is a three point sequence.

We have

$$H(e^{j\omega})=h[0]+h[1]e^{-j\omega}+h[2]e^{-2j\omega}$$

175

5.11. We know from the time expansion property (Table 5.1, Property 5.3.7) that

$$g[n] = x_{(2)}[n] \stackrel{FT}{\longleftrightarrow} G(e^{j\omega}) = X(e^{j2\omega}).$$

Therefore, $G(e^{j\omega})$ is obtained by compressing $X(e^{j\omega})$ by a factor of 2. Since we know that $X(e^{j\omega})$ is periodic with a period of 2π , we may conclude that $G(e^{j\omega})$ has a period which is $(1/2)2\pi = \pi$. Therefore,

$$G(e^{j\omega}) = G(e^{j(\omega-\pi)})$$
 and $\alpha = \pi$.

5.12. Consider the signal

$$x_1[n] = \left(\frac{\sin\frac{\pi}{4}n}{\pi n}\right).$$

From Table 5.2, we obtain the Fourier transform of $x_1[n]$ to be

$$X_1(e^{j\omega}) = \begin{cases} 1, & 0 \le |\omega| \le \frac{\pi}{4} \\ 0, & \frac{\pi}{4} < |\omega| < \pi \end{cases}$$

The plot of $X_1(e^{j\omega})$ is as shown in the Figure S5.12. Now consider the signal $x_2[n] = (x_1[n])^2$. Using the multiplication property (Table 5.1, Property 5.5), we obtain the Fourier transform of $x_2[n]$ to be

$$X_2(e^{j\omega}) = (1/2\pi)[X_1(e^{j\omega}) * X_1(e^{j\omega})].$$

From Figure S5.12 it is clear that $X_2(e^{i\omega})$ is zero for $|\omega| > \pi/2$. By using the convolution property (Table 5.1, Property 5.4), we note that

$$Y(e^{j\omega}) = X_2(e^{j\omega})\mathcal{FT}\left\{\frac{\sin(\omega_c n)}{\pi n}\right\}$$

17

and

$$H(e^{j(\omega-\pi)}) = h[0] + h[1]e^{-j(\omega-\pi)} + h[2]e^{-2j(\omega-\pi)}$$

= $h[0] - h[1]e^{-j\omega} + h[2]e^{-2j\omega}$

We see that $H(e^{j\omega}) = H(e^{j(\omega-\pi)})$ only if h[1] = 0.

We also have

$$H(e^{j\pi/2}) = h[0] + h[1]e^{-j\pi/2} + h[2]e^{-2j\pi/2}$$

= $h[0] - h[2]$

Since we are also given that $H(e^{j\pi/2}) = 1$, we have

$$h[0] - h[2] = 1.$$
 (S5.14-1)

Now note that

$$g[n] = h[n] * \{(1/4)^n u[n]\}$$

= $\sum_{k=0}^{2} h[k] (1/4)^{n-k} u[n-k]$

Evaluating this equation at n = 2, we have

$$g[2] = 0 = \frac{1}{16}h[0] + \frac{1}{4}h[1] + h[2]$$

Since h[1] = 0,

$$\frac{1}{16}h[0] + h[2] = 0. (S5.14-2)$$

Solving equations (S5.14-1) and (S5.14-2), we obtain

$$h[0] = \frac{16}{17}$$
, and $h[2] = -\frac{1}{17}$

Therefore,

$$h[n] = \frac{16}{17}\delta[n] - \frac{1}{17}\delta[n-2].$$

5.15. Consider x[n] = sin(ω_cn)/(πn). The Fourier transform X(e^{jω}) of x[n] is as shown in Figure S5.15. We note that the given signal y[n] = x[n]x[n]. Therefore, the Fourier transform Y(e^{jω}) of y[n] is

$$Y(e^{j\omega}) = \frac{1}{2\pi} \int_{<2\pi>} X(e^{j\theta}) X(e^{j(\omega-\theta)}) d\theta$$

Employing the approach used in Example 5.15, we can convert the above periodic convolution into an aperiodic signal by defining

$$\hat{X}(e^{j\omega}) = \begin{cases} X(e^{j\omega}), & -\pi < \omega \leq 1\\ 0, & \text{otherwise} \end{cases}$$

Then we may write

$$Y(e^{j\omega}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{X}(e^{j\theta}) X(e^{j(\omega-\theta)}) d\theta$$

This is the aperiodic convolution of the rectangular pulse $\dot{X}(e^{j\omega})$ shown in Figure S5.15 with the periodic square wave $X(e^{j\omega})$. The result of this convolution is as shown in the

From the figure, it is clear that we require $-1+(2\omega_c/\pi)$ to be 1/2. Therefore, $\omega_c=3\pi/4$.

5.16. We may write

$$X(e^{j\omega}) = \frac{1}{2\pi} \left\{ \frac{1}{1-\frac{1}{4}e^{-j\omega}} * \left[2\pi \sum_{k=0}^3 \delta(\omega - \frac{\pi k}{2}) \right] \right\}$$

where a denotes aperiodic convolution. We may also rewrite this as a periodic convolution

$$X(e^{j\omega}) = \frac{1}{2\pi} \int_0^{2\pi} G(e^{j\theta}) Q(e^{j(\omega-\theta)}) d\theta$$

where

$$G(e^{j\omega}) = \frac{1}{1 - \frac{1}{4}e^{-j\omega}}$$

and

$$Q(e^{j\omega}) = 2\pi \sum_{k=0}^{3} \delta(\omega - \frac{\pi k}{2})$$
 for $0 \le \omega < 2\pi$.

- (a) Taking the inverse Fourier transform of $G(e^{j\omega})$ (see Table 5.2), we get $g[n]=(1/4)^nu[n]$. Therefore, $\alpha=\frac{1}{4}$.
- (b) Taking the inverse Fourier transform of $Q(e^{j\omega})$ (see Table 5.2), we get

$$q[n] = 1 + \frac{1}{2}e^{j(\pi/2)n} + \frac{1}{4}e^{j\pi n} + \frac{1}{8}e^{j(3\pi/2)n}$$

This signal is periodic with a fundamental period of N=4.

177

5.20. (a) Since the LTI system is causal and stable, a single input-output pair is sufficient to determine the frequency response of the system. In this case, the input is x[n] = (4/5)ⁿu[n] and the output is y[n] = n(4/5)ⁿu[n]. The frequency response is given by

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

where $X(e^{i\omega})$ and $Y(e^{i\omega})$ are the Fourier transforms of x[n] and y[n] respectively. Using Table 5.2, we have

$$x[n] = \left(\frac{4}{5}\right)^n u[n] \stackrel{FT}{\longleftrightarrow} X(e^{j\omega}) = \frac{1}{1 - \frac{4}{5}e^{-j\omega}}$$

Using the differentiation in frequency property (Table 5.1, Property 5.3.8), we have

$$y[n] = n\left(\frac{4}{5}\right)^n u[n] \stackrel{FT}{\longleftrightarrow} Y(e^{j\omega}) = j\frac{dX(e^{j\omega})}{d\omega} = \frac{(4/5)e^{-j\omega}}{(1 - \frac{4}{5}e^{-j\omega})^2}$$

Therefore,

$$H(e^{j\omega}) = \frac{(4/5)e^{-j\omega}}{1 - \frac{4}{7}e^{-j\omega}}.$$

(b) Since $H(ej\omega) = Y(e^{j\omega})/X(e^{j\omega})$, we may write

$$Y(e^{j\omega})\left[1-\frac{4}{5}e^{-j\omega}\right]=X(e^{j\omega})\left[(4/5)e^{-j\omega}\right].$$

Taking the inverse Fourier tranform of both sides

$$y[n] - \frac{4}{5}y[n-1] = \frac{4}{5}x[n]$$

5.21. (a) The given signal is

$$x[n] = u[n-2] - u[n-6] = \delta[n-2] + \delta[n-3] + \delta[n-4] + \delta[n-5]$$

Using the Fourier transform analysis eq. (5.9), we obtain

$$X(e^{j\omega}) = e^{-2j\omega} + e^{-3j\omega} + e^{-4j\omega} + e^{-5j\omega}$$

(b) Using the Fourier transform analysis eq. (5.9), we obtain

$$X(e^{j\omega}) = \sum_{n=-\infty}^{-1} (\frac{1}{2})^{-n} e^{-j\omega n}$$
$$= \sum_{n=1}^{\infty} (\frac{1}{2}e^{j\omega})^n$$
$$= \frac{e^{j\omega}}{2} \frac{1}{(1-\frac{1}{2}e^{j\omega})}$$

(c) We can easily show that $X(e^{j\omega})$ is not conjugate symmetric. Therefore, x[n] is not real

5.17. Using the duality property, we have

$$(-1)^n \stackrel{FS}{\longleftrightarrow} a_k \Rightarrow a_n \stackrel{FS}{\longleftrightarrow} \frac{1}{N} (-1)^{-k} = \frac{1}{2} (-1)^k$$

5.18. Knowing that

$$\left(\frac{1}{2}\right)^{|n|} \overset{FT}{\longleftrightarrow} \frac{1-\frac{1}{4}}{1-\cos\omega+\frac{1}{4}} = \frac{3}{5-4\cos\omega},$$

we may use the Fourier transform analysis equation to write

$$\frac{3}{5 - 4\cos\omega} = \sum_{n = -\infty}^{\infty} \left(\frac{1}{2}\right)^{|n|} e^{-j\omega n}$$

Putting $\omega = -2\pi t$ in this equation, and replacing the variable n by the variable k

$$\frac{1}{5 - 4\cos(2\pi t)} = \sum_{k = -\infty}^{\infty} \frac{1}{3} \left(\frac{1}{2}\right)^{|k|} e^{j2\pi kt}$$

By comparing this with the continuous-time Fourier series synthesis equation, it is immediately apparent that $a_k = \frac{1}{3} \left(\frac{1}{2}\right)^{|k|}$ are the Fourier series coefficients of the signal $1/(5-4\cos(2\pi t))$.

5.19. (a) Taking the Fourier transform of both sides of the difference equation, we have

$$Y(e^{j\omega})\left[1-\frac{1}{6}e^{-j\omega}-\frac{1}{6}e^{-2j\omega}\right]=X(e^{j\omega}).$$

Therefore,

$$H(ej\omega) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1}{1 - \frac{1}{6}e^{-j\omega} - \frac{1}{6}e^{-2j\omega}} = \frac{1}{(1 - \frac{1}{2}e^{-j\omega})(1 + \frac{1}{3}e^{-j\omega})}$$

(b) Using Partial fraction expansion,

$$H(ej\omega) = \frac{3/5}{1 - \frac{1}{2}e^{-j\omega}} + \frac{2/5}{1 + \frac{1}{3}e^{-j\omega}}.$$

Using Table 5.2, and taking the inverse Fourier trasform, we obtain

$$h[n] = \frac{3}{5} \left(\frac{1}{2}\right)^n u[n] + \frac{2}{5} \left(-\frac{1}{3}\right)^n u[n].$$

178

(c) Using the Fourier transform analysis eq. (5.9), we obtain

$$X(e^{j\omega}) = \sum_{n=-\infty}^{-2} (\frac{1}{3})^{-n} e^{-j\omega n}$$

$$= \sum_{n=2}^{\infty} (\frac{1}{3}e^{j\omega})^{n}$$

$$= \frac{e^{2j\omega}}{9} \frac{1}{(1 - \frac{1}{3}e^{j\omega})}$$

(d) Using the Fourier transform analysis eq. (5.9), we obtain

$$X(e^{j\omega}) = \sum_{n=-\infty}^{0} 2^{n} \sin(\pi n/4) e^{-j\omega n}$$

$$= -\sum_{n=0}^{\infty} 2^{-n} \sin(\pi n/4) e^{j\omega n}$$

$$= -\frac{1}{2j} \sum_{n=0}^{\infty} [(1/2)^{n} e^{j\pi n/4} e^{j\omega n} - (1/2)^{n} e^{-j\pi n/4} e^{j\omega n}]$$

$$= -\frac{1}{2j} \left[\frac{1}{1 - (1/2)e^{j\pi/4} e^{j\omega}} - \frac{1}{1 - (1/2)e^{-j\pi/4} e^{j\omega}} \right]$$

(e) Using the Fourier transform analysis eq. (5.9), we obtain

$$\begin{split} X(e^{j\omega}) &= \sum_{n=-\infty}^{\infty} (1/2)^{|n|} \cos[\pi(n-1)/8] e^{-j\omega n} \\ &= \frac{1}{2} \left[\frac{e^{-j\pi/8}}{1 - (1/2)e^{j\pi/8} e^{-j\omega}} + \frac{e^{j\pi/8}}{1 - (1/2)e^{-j\pi/8} e^{-j\omega}} \right] \\ &+ \frac{1}{4} \left[\frac{e^{j\pi/4} e^{j\omega}}{1 - (1/2)e^{j\pi/8} e^{j\omega}} + \frac{e^{-j\pi/4} e^{j\omega}}{1 - (1/2)e^{-j\pi/8} e^{j\omega}} \right] \end{split}$$

(f) The given signal is

$$x[n] = -3\delta[n+3] - 2\delta[n+2] - \delta[n+1] + \delta[n-1] + 2\delta[n-2] + 3\delta[n-3].$$

Using the Fourier transform analysis eq. (5.9), we obtain

$$X(e^{j\omega}) = -3e^{3j\omega} - 2e^{2j\omega} - e^{j\omega} + e^{-j\omega} + 2e^{-2j\omega} + 3e^{-3j\omega}$$

(g) The given signal is

$$x[n] = \sin(\pi n/2) + \cos(n) = \frac{1}{2j} [e^{j\pi n/2} - e^{-j\pi n/2}] + \frac{1}{2} [e^{jn} + e^{-jn}].$$

Therefore

$$X(e^{j\omega}) = \frac{\pi}{j} [\delta(\omega - \pi/2) - \delta(\omega + \pi/2)] + \pi[\delta(\omega - 1) + \delta(\omega + 1)], \quad \text{in } 0 \le |\omega| < \pi.$$

(h) The given signal is

$$x[n] = \sin(5\pi n/3) + \cos(7\pi n/3)$$

$$= -\sin(\pi n/3) + \cos(\pi n/3)$$

$$= -\frac{1}{2i} [e^{j\pi n/3} - e^{-j\pi n/3}] + \frac{1}{2} [e^{j\pi n/3} + e^{-j\pi n/3}].$$

Therefore.

$$X(e^{j\omega}) = -\frac{\pi}{i} [\delta(\omega - \pi/3) - \delta(\omega + \pi/3)] + \pi [\delta(\omega - \pi/3) + \delta(\omega + \pi/3)], \quad \text{in } 0 \le |\omega| < \pi.$$

(i) x[n] is periodic with period 6. The Fourier series coefficients of x[n] are given by

$$\begin{split} a_k &= \frac{1}{6} \sum_{n=0}^{5} x[n] e^{-j(2\pi/6)kn} \\ &= \frac{1}{6} \sum_{n=0}^{4} e^{-j(2\pi/6)kn} \\ &= \frac{1}{6} \left[\frac{1 - e^{-j5\pi k/3}}{1 - e^{-j(2\pi/6)k}} \right] \end{split}$$

Therefore, from the results of Section 5.2

$$X(e^{j\omega}) = \sum_{l=-\infty}^{\infty} 2\pi \left(\frac{1}{6}\right) \left[\frac{1-e^{-j5\pi k/3}}{1-e^{-j(2\pi/6)k}}\right] \delta(\omega - \frac{2\pi}{6} - 2\pi l).$$

(j) Using the Fourier transform analysis eq. (5.9) we obtain

$$\left(\frac{1}{3}\right)^{|n|} \stackrel{FT}{\longleftrightarrow} \frac{4}{5 - 3\cos\omega}$$

Using the differentiation in frequency property of the Fourier transform,

$$n\left(\frac{1}{3}\right)^{|n|} \stackrel{FT}{\longleftrightarrow} -j\frac{12\sin\omega}{(5-3\cos\omega)^2}$$

Therefore.

$$x[n] = n\left(\frac{1}{3}\right)^{|n|} - \left(\frac{1}{3}\right)^{|n|} \xleftarrow{FT} \frac{4}{5 - 3\cos\omega} - j\frac{12\sin\omega}{(5 - 3\cos\omega)^2}$$

(k) We have

$$x_1[n] = \frac{\sin(\pi n/5)}{\pi n} \stackrel{FT}{\longleftrightarrow} X_1(e^{j\omega}) = \begin{cases} 1, & |\omega| < \frac{\pi}{5} \\ 0, & \frac{\pi}{5} \le |\omega| < \pi \end{cases}$$

181

(e) This is the Fourier transform of a periodic signal with fundamental frequency π/2. Therefore, its fundamental period is 4. Also, the Fourier series coefficients of this signal are a₄ = (-1)⁴. Therefore, the signal is given by

$$x[n] = \sum_{k=0}^{3} (-1)^k e^{jk(\pi/2)n} = 1 - e^{j\pi n/2} + e^{j\pi n} - e^{j3\pi n/2}.$$

(f) The given Fourier transform may be written as

$$\begin{array}{rcl} X(e^{j\omega}) & = & e^{-j\omega} \sum_{n=0}^{\infty} (1/5)^n e^{-j\omega n} - (1/5) \sum_{n=0}^{\infty} (1/5)^n e^{-j\omega n} \\ & = & 5 \sum_{n=1}^{\infty} (1/5)^n e^{-j\omega n} - (1/5) \sum_{n=0}^{\infty} (1/5)^n e^{-j\omega n} \end{array}$$

Comparing each of the two terms in the right-hand side of the above equation with the Fourier transform analysis eq. (5.9) we obtain

$$x[n] = \left(\frac{1}{5}\right)^{n-1} u[n-1] - \left(\frac{1}{5}\right)^{n+1} u[n].$$

(g) The given Fourier transform may be written as

$$X(e^{j\omega}) = \frac{2/9}{1 - \frac{1}{2}e^{-j\omega}} + \frac{7/9}{1 + \frac{1}{4}e^{-j\omega}}$$

Therefore,

$$x[n] = \frac{2}{9} \left(\frac{1}{2}\right)^n u[n] + \frac{7}{9} \left(-\frac{1}{4}\right)^n u[n].$$

(h) The given Fourier transform may be written as

$$X(e^{j\omega}) = 1 + \frac{1}{3}e^{-j\omega} + \frac{1}{3^2}e^{-j2\omega} + \frac{1}{3^3}e^{-j3\omega} + \frac{1}{3^4}e^{-j4\omega} + \frac{1}{3^5}e^{-j5\omega}$$

Comparing the given Fourier transform with the analysis eq. (5.8), we obtain

$$x[n] = \delta[n] + \frac{1}{3}\delta[n-1] + \frac{1}{9}\delta[n-2] + \frac{1}{27}\delta[n-3] + \frac{1}{81}\delta[n-4] + \frac{1}{243}\delta[n-5].$$

5.23. (a) We have from eq. (5.9)

$$X(e^{j0}) = \sum_{n=0}^{\infty} x[n] = 6.$$

(b) Note that y[n] = x[n + 2] is an even signal. Therefore, Y(e^{jω}) is real and even. This implies that ⊲Y(e^{jω}) = 0. Furthermore, from the time shifting property of the Fourier transform we have Y(e^{jω}) = e^{j2ω}X(e^{jω}). Therefore, ⊲X(e^{jω}) = e^{-j2ω}.

Also.

$$x_2[n] = \cos(7\pi n/2) = \cos(\pi n/2) \xrightarrow{FT} X_2(e^{j\omega}) = \pi \{\delta(\omega - \pi/2) + \delta(\omega + \pi/2)\}.$$

in the range $0 \le |\omega| < \pi$. Therefore, if $x[n] = x_1[n]x_2[n]$, then

$$X(e^{j\omega}) = \text{Periodic convolution of } X_1(e^{j\omega}) \text{ and } X_2(e^{j\omega}).$$

Using the mechanics of periodic convolution demonstrated in Example 5.15, we obtain in the range $0 \le |\omega| < \pi$,

$$X(e^{j\omega}) = \begin{cases} 1, & \frac{3\pi}{10} < |\omega| < \frac{7\pi}{10} \\ 0, & \text{otherwise} \end{cases}$$

5.22. (a) Using the Fourier transform synthesis eq. (5.8), we obtain

$$z[n] = \frac{1}{2\pi} \int_{-3\pi/4}^{-\pi/4} e^{j\omega n} d\omega + \frac{1}{2\pi} \int_{\pi/4}^{3\pi/4} e^{j\omega n} d\omega$$
$$= \frac{1}{\pi n} [\sin(3\pi n/4) - \sin(\pi n/4)]$$

(b) Comparing the given Fourier transform with the analysis eq. (5.8), we obtain

$$x[n] = \delta[n] + 3\delta[n-1] + 2\delta[n-2] - 4\delta[n-3] + \delta[n-10].$$

(c) Using the Fourier transform synthesis eq. (5.8), we obtain

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-j\omega/2} e^{j\omega n} d\omega$$
$$= \frac{(-1)^{n+1}}{\pi(n-\frac{1}{2})}$$

(d) The given Fourier transform is

$$\begin{array}{ll} X(e^{j\omega}) & = & \cos^2\omega + \sin^2(3\omega) \\ & = & \frac{1+\cos(2\omega)}{2} + \frac{1-\cos(3\omega)}{2} \\ & = & 1 + \frac{1}{4}e^{2j\omega} + \frac{1}{4}e^{-2j\omega} + -\frac{1}{4}e^{3j\omega} - \frac{1}{4}e^{-3j\omega} \end{array}$$

Comparing the given Fourier transform with the analysis eq. (5.8), we obtain

$$x[n] = \delta[n] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n+2] - \frac{1}{4}\delta[n-3] - \frac{1}{4}\delta[n+3].$$

182

(c) We have from eq. (5.8)

$$2\pi x[0] = \int_{-\pi}^{\pi} X(e^{j\omega})d\omega.$$

Therefore,

$$\int_{-\pi}^{\pi} X(e^{j\omega})d\omega = 4\pi.$$

(d) We have from eq. (5.9)

$$X(e^{j\pi}) = \sum_{n=0}^{\infty} x[n](-1)^n = 2.$$

(e) From Table 5.1, we have

$$\mathcal{E}v\{x[n]\} \stackrel{FT}{\longleftrightarrow} \mathcal{R}e\{X(e^{j\omega})\}.$$

Therefore, the desired signal is $\mathcal{E}v\{x[n]\} = (x[n] + x[-n])/2$. This is as shown in Figure 95.23

(f) (i) From Parseval's theorem we have

$$\int_{-\infty}^{\infty} |X(e^{j\omega})|^2 = 2\pi \sum_{n=-\infty}^{\infty} |x[n]|^2 = 28\pi$$

(ii) Using the differentiation in frequency property of the Fourier transform we obtain

$$nx[n] \stackrel{FT}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega}$$
.

Again using Parseval's theorem, we obtain

$$\int_{-\infty}^{\infty} \left| \frac{dX(e^{j\omega})}{d\omega} \right|^2 = 2\pi \sum_{n=-\infty}^{\infty} |n|^2 |x[n]|^2 = 316\pi$$

- 5.24. (1) For Re{X(e^{jω})} to be zero, the signal must be real and odd. Only signals (b) and (i) are real and odd.
 - (2) For Im{X(e^{jω})} to be zero, the signal must be real and even. Only signals (d) and (h) are real and even.

- (3) Assume Y(e^{jω}) = e^{jωω}X(e^{jω}). Using the time shifting property of the Fourier transform we have y[n] = x[n + α]. If Y(e^{jω}) is real, then y[n] is real and even (assuming that x[n] is real). Therefore, x[n] has to be symmetric about α. This is true only for signals (a), (b), (d), (e), (f), and (h).
- (4) Since $\int_{-\pi}^{\pi} X(e^{j\omega})d\omega = 2\pi x[0]$, the given condition is satisfied only if x[0] = 0. This is true for signals (b), (e), (f), (h), and (i).
- (5) X(e^{jω}) is always periodic with period 2π. Therefore, all signals satisfy this condition.
- (6) Since X(e^{j0}) = ∑_{n=-∞}[∞] x[n], the given condition is satisfied only if the samples of the signal add up to zero. This is true for signals (b), (g), and (i).
- 5.25. If the inverse Fourier transform of $X(e^{j\omega})$ is x[n], then

$$x_c[n] = \mathcal{E}v\{x[n]\} = \frac{x[n] + x[-n]}{2} \stackrel{FT}{\longleftrightarrow} A(\omega)$$

and

$$x_o[n] = \mathcal{O}d\{x[n]\} = \frac{x[n] - x[-n]}{2} \xrightarrow{FT} jB(\omega)$$

Therefore, the inverse Fourier transform of $B(\omega)$ is $-jx_o[n]$. Also, the inverse Fourier transform of $A(\omega)e^{j\omega}$ is $\mathbf{z}_e[n+1]$. Therefore, the time function corresponding to the inverse Fourier transform of $B(\omega) + A(\omega)e^{j\omega}$ will be $\mathbf{z}_e[n+1] - j\mathbf{z}_o[n]$. This is as shown in the

Figure S5.25

5.26. (a) We may express $X_2(e^{j\omega})$ as

$$X_2(e^{j\omega}) = \mathcal{R}e\{X_1(e^{j\omega})\} + \mathcal{R}e\{X_1(e^{j(\omega-2\pi/3)})\} + \mathcal{R}e\{X_1(e^{j(\omega+2\pi/3)})\}$$

Therefore,

$$x_2[n] = \mathcal{E}v\{x_1[n]\} \left[1 + e^{j2\pi/3} + e^{-j2\pi/3}\right].$$

185

Figure S5.27

(a) If $x[n] = (-1)^n$,

$$g[n] = \delta[n] - \delta[n-1].$$

(b) If $x[n] = (1/2)^n u[n]$, g[n] has to be chosen such that

$$g[n] = \begin{cases} 1, & n = 0 \\ 2, & n = 1 \\ 0, & n > 1 \\ \text{any value,} & \text{otherwise} \end{cases}$$

Therefore, there are many possible choices for g[n].

5.29. (a) Let the output of the system be y[n]. We know that $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega}).$

In this part of the problem

$$H(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

(b) We may express X₃(e^{jω}) as

$$X_3(e^{j\omega}) = Im\{X_1(e^{j(\omega-\pi)})\} + Im\{X_1(e^{j(\omega+\pi)})\}.$$

$$x_3[n] = Od\{x_1[n]\} [e^{j\pi n} + e^{-j\pi n}] = 2(-1)^n Od\{x_1[n]\}.$$

(c) We may express α as

$$\alpha = \frac{j \left. \frac{dX_1(e^{j\omega})}{d\omega} \right|_{\omega=0}}{X_1(e^{j\omega})\big|_{\omega=0}} = \frac{j(-6j/\pi)}{1} = \frac{6}{\pi}.$$

(d) Using the fact that $H(e^{j\omega})$ is the frequency response of an ideal lowpass filter with cutoff frequency $\pi/6$, we may draw $X_4(e^{j\omega})$ as shown in Figure S5.26.

- 5.27. (a) $W(e^{j\omega})$ will be the periodic convolution of $X(e^{j\omega})$ with $P(e^{j\omega})$. The Fourier transforms are sketched in Figure S5.27.
 - (b) The Fourier transform of $Y(e^{j\omega})$ of y[n] is $Y(e^{j\omega}) = P(e^{j\omega})H(e^{j\omega})$. The LTI system with unit sample response h[n] is an ideal lowpass filter with cutoff frequency $\pi/2$. Therefore, $Y(e^{j\omega})$ for each choice of p[n] are as shown in Figure S5.27. Therefore, y[n]in each case is:
 - (i) y[n] = 0

 - (ii) $y[n] = \frac{\sin(\pi n/2)}{2\pi n} \frac{1 \cos(\pi n/2)}{\pi^2 n^2}$ (iii) $y[n] = \frac{\sin(\pi n/2)}{\pi^2 n^2} \frac{\cos(\pi n/2)}{2\pi n}$
 - (iv) $y[n] = 2 \left[\frac{\sin(\pi n/4)}{\pi n} \right]^2$
 - (v) $y[n] = \frac{1}{4} \left[\frac{\sin(\pi n/2)}{\pi n} \right]$

5.28. Let

$$\frac{1}{2\pi}\int_{-\pi}^{\pi} X(e^{j\theta})G(e^{j(\omega-\theta)})d\theta = 1 + e^{-j\omega} = Y(e^{j\omega}).$$

Taking the inverse Fourier transform of the above equation, we obtain

$$g[n]x[n] = \delta[n] + \delta[n-1] = y[n].$$

186

(i) We have

$$X(e^{j\omega}) = \frac{1}{1 - \frac{3}{7}e^{-j\omega}}.$$

Therefore,

$$\begin{array}{rcl} Y(e^{j\omega}) & = & \left[\frac{1}{1-\frac{3}{4}e^{-j\omega}}\right] \left[\frac{1}{1-\frac{1}{2}e^{-j\omega}}\right] \\ & = & \frac{-2}{1-\frac{1}{2}e^{-j\omega}} + \frac{3}{1-\frac{3}{4}e^{-j\omega}} \end{array}$$

Taking the inverse Fourier transform, we obtain

$$y[n] = 3\left(\frac{3}{4}\right)^n u[n] - 2\left(\frac{1}{2}\right)^n u[n].$$

(ii) We have

$$X(e^{j\omega}) = \frac{1}{\left(1 - \frac{1}{4}e^{-j\omega}\right)^2}$$

Therefore,

$$\begin{array}{ll} Y(e^{j\omega}) & = & \left[\frac{1}{\left(1-\frac{1}{4}e^{-j\omega}\right)^2}\right]\left[\frac{1}{1-\frac{1}{2}e^{-j\omega}}\right] \\ & = & \frac{4}{1-\frac{1}{2}e^{-j\omega}} - \frac{3}{\left(1-\frac{1}{4}e^{-j\omega}\right)^2} \end{array}$$

Taking the inverse Fourier transform, we

$$y[n] = 4\left(\frac{1}{2}\right)^n u[n] - 2\left(\frac{1}{4}\right)^n u[n] - 3(n+1)\left(\frac{1}{4}\right)^n u[n].$$

(iii) We have

$$X(e^{j\omega}) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - (2k+1)\pi).$$

Therefore,

$$Y(e^{j\omega}) = \left[2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - (2k+1)\pi)\right] \left[\frac{1}{1 - \frac{1}{2}e^{-j\omega}}\right]$$
$$= \frac{4\pi}{3} \sum_{k=-\infty}^{\infty} \delta(\omega - (2k+1)\pi)$$

Taking the inverse Fourier transform, we obtain

$$x[n] = \frac{2}{3}(-1)^n.$$

(b) Given

$$h[n] = \frac{1}{2} \left(\frac{1}{2} e^{j\pi/2} \right)^n u[n] + \frac{1}{2} \left(\frac{1}{2} e^{-j\pi/2} \right)^n u[n],$$

we obtain

$$H(e^{j\omega}) = \frac{1/2}{1 - \frac{1}{2}e^{j\pi/2}e^{-j\omega}} + \frac{1/2}{1 - \frac{1}{2}e^{-j\pi/2}e^{-j\omega}}$$

(i) We have

$$X(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

Therefore

$$\begin{split} Y(e^{j\omega}) &= \left[\frac{1/2}{1 - \frac{1}{2}e^{j\pi/2}e^{-j\omega}} + \frac{1/2}{1 - \frac{1}{2}e^{-j\pi/2}e^{-j\omega}}\right] \left[\frac{1}{1 - \frac{1}{2}e^{-j\omega}}\right] \\ &= \frac{A}{1 - (1/2)e^{j\pi/2}e^{-j\omega}} + \frac{B}{1 - (1/2)e^{-j\omega}} + \frac{C}{1 - (1/2)e^{-j\pi/2}e^{-j\omega}} \end{split}$$

where A = -j/[2(1-j)], B = 1/2, and C = 1/[2(1+j)]. Therefore

$$y[n] = \frac{-j}{2(1-j)} \left(\frac{j}{2}\right)^n u[n] + \frac{1}{2(1+j)} \left(-\frac{j}{2}\right)^n u[n] + \frac{1}{2} \left(\frac{1}{2}\right)^n u[n]$$

(ii) In this case,

$$y[n] = \frac{\cos(\pi n/2)}{3} \left[4 - (\frac{1}{2})^n\right] u[n].$$

(c) Here,

$$\begin{array}{ll} Y(e^{j\omega}) & = & X(e^{j\omega})H(e^{j\omega}) = -3e^{-2j\omega} - e^{j\omega} + 1 - 2e^{-j2\omega} \\ & + 6e^{-j\omega} + 2e^{-j2\omega} - 2e^{-j3\omega} + 4e^{-j5\omega} \\ & + 3e^{j5\omega} + e^{j4\omega} - e^{j3\omega} + 2e^{j\omega} \end{array}$$

Therefore.

$$\begin{array}{ll} y[n] & = & 3\delta[n+5] + \delta[n+4] - \delta[n+3] - 3\delta[n+2] \\ & + \delta[n+1] + \delta[n] + 6\delta[n-1] - 2\delta[n-3] + 4\delta[n-5]. \end{array}$$

- 5.30. (a) The frequency response of the system is as shown in Figure S5.30.

 - (b) The Fourier transform X(e^{jω}) of x[n] is as shown in Figure S5.30.
 (i) The frequency response H(e^{jω}) is as shown in Figure S5.30. Therefore, y[n] = sin(πn/8).
 - (ii) The frequency response $H(e^{j\omega})$ is as shown in Figure S5.30. Therefore, y[n] $2\sin(\pi n/8) - 2\cos(\pi n/4)$.
 - (iii) The frequency response $H(e^{j\omega})$ is as shown in Figure S5.30. Therefore, $y[n]=\frac{1}{6}\sin(\pi n/8)-\frac{1}{4}\cos(\pi n/4)$.

189

in the range $0 \le |\omega| \le \pi$. Therefore,

$$y[n] = a_0 + a_1 e^{j\pi n/4} + a_{-1} e^{-j\pi/4} = \frac{5}{8} + [(1/4) + (1/2)(1/\sqrt{2})] \cos(\pi n/4).$$

(ii) The signal x[n] is periodic with period 8. The Fourier series coefficients of the signal are

$$a_k = \frac{1}{8} \sum_{n=0}^{7} x[n] e^{-j(2\pi/8)kn}$$

The Fourier transform of this signal is

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - 2\pi k/8).$$

The Fourier transform $Y(e^{j\omega})$ of the output is $Y(e^{j\omega})=X(e^{j\omega})H(e^{j\omega})$. Therefore,

$$Y(e^{j\omega}) = 2\pi[a_0\delta(\omega) + a_1\delta(\omega - \pi/4) + a_{-1}\delta(\omega + \pi/4)]$$

in the range $0 \le |\omega| \le \pi$. Therefore,

$$y[n] = a_0 + a_1 e^{j\pi n/4} + a_{-1} e^{-j\pi/4} = \frac{1}{8} + \frac{1}{4}\cos(\pi n/4).$$

(iii) Again in this case, the Fourier transform $X(e^{j\omega})$ of the signal x[n] is of the form shown in part (i). Therefore,

$$y[n] = a_0 + a_1 e^{j\pi n/4} + a_{-1} e^{-j\pi/4} = \frac{1}{8} + [(1/4) - (1/2)(1/\sqrt{2})] \cos(\pi n/4)$$

(iv) In this case, the output is

$$y[n] = h[n] * x[n] = \frac{\sin[\pi/3(n-1)]}{\pi(n-1)} + \frac{\sin[\pi/3(n+1)]}{\pi(n+1)}$$

5.31. (a) From the given information, it is clear that when the input to the system is a complex exponential of frequency ω_0 , the output is a complex exponential of the same frequency but scaled by the $|\omega_0|$. Therefore, the frequency response of the system is

$$H(e^{j\omega}) = |\omega|, \quad \text{for } 0 \le |\omega| \le \pi.$$

(b) Taking the inverse Fourier transform of the frequency response, we obtain

$$\begin{split} h[n] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega \\ &= \frac{1}{2\pi} \int_{-\pi}^{0} -\omega e^{j\omega n} d\omega + \frac{1}{2\pi} \int_{0}^{\pi} \omega e^{j\omega n} d\omega \\ &= \frac{1}{\pi} \int_{0}^{\pi} \omega \cos(\omega n) d\omega \\ &= \frac{1}{\pi} \left[\frac{\cos(n\pi) - 1}{n^2} \right] \end{split}$$

- (iv) The frequency response $H(e^{i\omega})$ is as shown in Figure S5.30. Therefore, y[n] = $-\sin(\pi n/4)$.
- (c) The frequency response $H(e^{j\omega})$ is as shown in Figure S5.30
 - (i) The signal z[n] is periodic with period 8. The Fourier series coefficients of the

$$a_k = \frac{1}{8} \sum_{n=0}^7 x[n] e^{-j(2\pi/8)kn}.$$
 The Fourier transform of this signal is

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} 2\pi a_k \delta(\omega - 2\pi k/8).$$

The Fourier transform $Y(e^{j\omega})$ of the output is $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$. Therefore,

$$Y(e^{j\omega}) = 2\pi[a_0\delta(\omega) + a_1\delta(\omega - \pi/4) + a_{-1}\delta(\omega + \pi/4)]$$

190

5.32. From the synthesis equation (5.8) we have

$$\left[\frac{1}{2\pi}\int_{-\pi}^{\pi} H_1(e^{j\omega})d\omega\right]\left[\frac{1}{2\pi}\int_{-\pi}^{\pi} H_2(e^{j\omega})d\omega\right] = h_1[0]h_2[0]$$

Also, since

$$h_1[n] * h_2[n] \stackrel{FT}{\longleftrightarrow} H_1(e^{j\omega})H_2(e^{j\omega}),$$

we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} H_1(e^{j\omega}) H_2(e^{j\omega}) d\omega = [h_1[n] * h_2[n]]_{n=0}.$$

Therefore, the question here amounts to asking whether it is true that

$$h_1[0]h_2[0] = [h_1[n] * h_2[n]]_{n=0}$$
.

Since $h_1[n]$ and $h_2[n]$ are causal, this is indeed true.

5.33. (a) Taking the Fourier transform of the given difference equation we have

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1}{1 + \frac{1}{2}e^{-j\omega}}$$

(b) The Fourier transform of the output will be $Y(e^{j\omega}) = X(e^{j\omega})H(e^{j\omega})$.

(i) In this case

$$X(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

Therefore,

$$Y(e^{j\omega}) = \left[\frac{1}{1 - \frac{1}{2}e^{-j\omega}}\right] \left[\frac{1}{1 + \frac{1}{2}e^{-j\omega}}\right]$$
$$= \frac{1/2}{1 - \frac{1}{2}e^{-j\omega}} + \frac{1/2}{1 + \frac{1}{2}e^{-j\omega}}$$

Taking the inverse Fourier transform, we obt

$$y[n] = \frac{1}{2} \left(\frac{1}{2}\right)^n u[n] + \frac{1}{2} \left(-\frac{1}{2}\right)^n u[n].$$

(ii) In this case

$$X(e^{j\omega}) = \frac{1}{1 + \frac{1}{2}e^{-j\omega}}$$

Therefore,

$$Y(e^{j\omega}) = \left[\frac{1}{1 - \frac{1}{2}e^{-j\omega}}\right]^2.$$

Taking the inverse Fourier transform, we of

$$y[n] = (n+1)\left(-\frac{1}{2}\right)^n u[n].$$

 $X(e^{j\omega})=1+\frac{1}{2}e^{-j\omega}.$

Therefore.

$$Y(e^{j\omega}) = 1$$

Taking the inverse Fourier transform, we obtain

(iv) In this case

$$X(e^{j\omega}) = 1 - \frac{1}{2}e^{-j\omega}.$$

Therefore.

$$\begin{split} Y(e^{j\omega}) &= \left[1-\frac{1}{2}e^{-j\omega}\right]\left[\frac{1}{1+\frac{1}{2}e^{-j\omega}}\right] \\ &= -1+\frac{2}{1+\frac{1}{2}e^{-j\omega}} \end{split}$$

Taking the inverse Fourier transform, we obtain

$$y[n] = -\delta[n] + 2\left(-\frac{1}{2}\right)^n u[n]$$

(c) (i) We have

$$Y(e^{j\omega}) = \left[\frac{1 - \frac{1}{4}e^{-j\omega}}{1 + \frac{1}{2}e^{-j\omega}}\right] \left[\frac{1}{1 + \frac{1}{2}e^{-j\omega}}\right]$$
$$= \frac{1}{(1 + \frac{1}{2}e^{-j\omega})^2} - \frac{\frac{1}{4}e^{-j\omega}}{(1 + \frac{1}{2}e^{-j\omega})^2}$$

Taking the inverse Fourier transform, we obtain

$$y[n] = (n+1)\left(-\frac{1}{2}\right)^n u[n] - \frac{1}{4}n\left(-\frac{1}{2}\right)^{n-1} u[n-1]$$

(ii) We have

$$\begin{array}{rcl} Y(e^{j\omega}) & = & \left[\frac{1+\frac{1}{2}e^{-j\omega}}{1-\frac{1}{4}e^{-j\omega}}\right]\left[\frac{1}{1+\frac{1}{2}e^{-j\omega}}\right] \\ & = & \frac{1}{1-\frac{1}{2}e^{-j\omega}} \end{array}$$

Taking the inverse Fourier transform,

$$y[n] = \left(\frac{1}{4}\right)^n u[n]$$

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{b + e^{-j\omega}}{1 - ae^{-j\omega}}$$

In order for $|H(e^{j\omega})|$ to be one, we must ensure the

$$|b + e^{-j\omega}| = |1 - ae^{-j\omega}|$$

 $1 + b^2 + 2b\cos\omega = 1 + a^2 - 2a\cos\omega$

This is possible only if b = -a

- (b) The plot is as shown Figure S5.35
- (c) The plot is as shown Figure S5.35.

(d) When $a = -\frac{1}{2}$,

 $H(e^{j\omega}) = \frac{\frac{1}{2} + e^{-j\omega}}{1 + \frac{1}{2}e^{-j\omega}}$

$$X(e^{j\omega}) = \frac{1}{1 - \frac{1}{2}e^{-j\omega}}$$

Therefore

$$\begin{array}{rcl} Y(e^{j\omega}) & = & \frac{\frac{1}{2} + e^{-j\omega}}{(1 + \frac{1}{2}e^{-j\omega})(1 - \frac{1}{2}e^{-j\omega})} \\ & = & \frac{5/4}{1 - \frac{1}{2}e^{-j\omega}} - \frac{3/4}{1 + \frac{1}{2}e^{-j\omega}} \end{array}$$

Taking the inverse Fourier transform w

$$y[n] = \frac{5}{4} \left(\frac{1}{2}\right)^n u[n] - \frac{3}{4} \left(-\frac{1}{2}\right)^n u[n]$$

(iii) We have

$$Y(e^{j\omega}) = \left[\frac{1}{(1+\frac{1}{2}e^{-j\omega})(1-\frac{1}{4}e^{-j\omega})}\right] \left[\frac{1}{1+\frac{1}{2}e^{-j\omega}}\right]$$

$$= \frac{2/3}{(1+\frac{1}{2}e^{-j\omega})^2} + \frac{2/9}{1+\frac{1}{2}e^{-j\omega}} + \frac{1/9}{1-\frac{1}{4}e^{-j\omega}}$$

Taking the inverse Fourier transform.

$$y[n] = \frac{2}{3}(n+1)\left(-\frac{1}{2}\right)^n u[n] + \frac{2}{9}\left(-\frac{1}{2}\right)^n u[n] + \frac{1}{9}\left(\frac{1}{4}\right)^n u[n].$$

(iv) We have

$$\begin{array}{rcl} Y(e^{j\omega}) & = & \left[1 + 2e^{-3j\omega}\right] \left[\frac{1}{1 + \frac{1}{2}e^{-j\omega}}\right] \\ & = & \frac{1}{1 + \frac{1}{2}e^{-j\omega}} + \frac{2e^{-3j\omega}}{1 + \frac{1}{2}e^{-j\omega}} \end{array}$$

Taking the inverse Fourier transform, we obtain

$$y[n] = \left(-\frac{1}{2}\right)^n u[n] + 2\left(-\frac{1}{2}\right)^{n-3} u[n-3].$$

5.34. (a) Since the two systems are cascaded, the frequency response of the overall system is

$$H(e^{j\omega}) = H_1(e^{j\omega})H_2(e^{j\omega})$$

= $\frac{2 - e^{-j\omega}}{1 + \frac{1}{2}e^{-j3\omega}}$

Therefore, the Fourier transforms of the input and output of the overall system are

$$\frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{2 - e^{-j\omega}}{1 + \frac{1}{8}e^{-j3\omega}}.$$

Cross-multiplying and taking the inverse Fourier transform, we get

$$y[n] + \frac{1}{8}y[n-3] = 2x[n] - x[n-1].$$

(b) We may rewrite the overall frequency response as

$$H(e^{j\omega}) = \frac{4/3}{1 + \frac{1}{2}e^{-j\omega}} + \frac{(1 + j\sqrt{3})/3}{1 - \frac{1}{2}e^{j120}e^{-j\omega}} + \frac{(1 - j\sqrt{3})/3}{1 - \frac{1}{2}e^{-j120}e^{-j\omega}}$$

$$h[n] = \frac{4}{3} \left(-\frac{1}{2} \right)^n u[n] + \frac{1+j\sqrt{3}}{3} \left(\frac{1}{2} e^{j120} \right)^n u[n] + \frac{1-j\sqrt{3}}{3} \left(\frac{1}{2} e^{-j120} \right)^n u[n].$$

This is as sketched in Figure S5.35.

5.36. (a) The frequency responses are related by the following expression:

$$G(e^{j\omega}) = \frac{1}{H(e^{j\omega})}$$

(b) (i) Here, $H(e^{j\omega}) = 1 - \frac{1}{4}e^{-j\omega}$. Therefore, $G(e^{j\omega}) = 1/(1 - \frac{1}{4}e^{-j\omega})$ and $g[n] = (\frac{1}{4})^n u[n]$.

$$G(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1}{1 - \frac{1}{4}e^{-j\omega}},$$

the difference equation relating the input x[n] and output y[n] is

$$y[n] - \frac{1}{4}y[n-1] = x[n].$$

(ii) Here, $H(e^{j\omega})=1/(1+\frac{1}{2}e^{-j\omega})$. Therefore, $G(e^{j\omega})=1+\frac{1}{2}e^{-j\omega}$ and $g[n]=\delta[n]+\delta[n]$

$$G(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = 1 + \frac{1}{2}e^{-j\omega},$$

the difference equation relating the input x[n] and output y[n] is

$$y[n] = x[n] + \frac{1}{2}x[n-1].$$

(iii) Here, $H(e^{j\omega}) = (1 - \frac{1}{4}e^{-j\omega})/(1 + \frac{1}{2}e^{-j\omega})$. Therefore, $G(e^{j\omega}) = (1 + \frac{1}{2}e^{-j\omega})/(1 - \frac{1}{4}e^{-j\omega})$ and $g[n] = (\frac{1}{4})^n u[n] + \frac{1}{2}(\frac{1}{4})^{n-1}u[n-1]$. Since

$$G(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1 + \frac{1}{2}e^{-j\omega}}{1 - \frac{1}{4}e^{-j\omega}},$$

the difference equation relating the input x[n] and output y[n] is

$$y[n] - \frac{1}{4}y[n-1] = x[n] + \frac{1}{2}x[n-1].$$

(iv) Here, $H(e^{j\omega}) = (1 - \frac{1}{4}e^{-j\omega} - \frac{1}{8}e^{-2j\omega})/(1 + \frac{5}{4}e^{-j\omega} - \frac{1}{8}e^{-2j\omega})$. Therefore, $G(e^{j\omega}) = (1 + \frac{5}{4}e^{-j\omega} - \frac{1}{8}e^{-2j\omega})/(1 - \frac{1}{4}e^{-j\omega} - \frac{1}{8}e^{-2j\omega})$. Therefore, $G(e^{j\omega}) = 1 + \frac{2}{1 - (1/2)e^{-j\omega}} - \frac{2}{1 + (1/4)e^{-j\omega}}$

$$G(e^{j\omega}) = 1 + \frac{2}{1 - (1/2)e^{-j\omega}} - \frac{2}{1 + (1/4)e^{-j\omega}}$$

$$g[n] = \delta[n] + 2\left(\frac{1}{2}\right)^n u[n] - 2\left(-\frac{1}{4}\right)^n u[n].$$

$$G(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{(1 + \frac{5}{4}e^{-j\omega} - \frac{1}{8}e^{-2j\omega})}{(1 - \frac{1}{4}e^{-j\omega} - \frac{1}{8}e^{-2j\omega})},$$
 the difference equation relating the input $x[n]$ and output $y[n]$ is

$$y[n] - \frac{1}{4}y[n-1] - \frac{1}{8}y[n-1] = x[n] + \frac{5}{4}x[n-1] - \frac{1}{8}x[n-2].$$

(v) Here, $H(e^{j\omega}) = (1 - \frac{1}{2}e^{-j\omega})/(1 + \frac{5}{4}e^{-j\omega} - \frac{1}{8}e^{-2j\omega})$. Therefore, $G(e^{j\omega}) = (1 + \frac{5}{4}e^{-j\omega} - \frac{1}{8}e^{-2j\omega})/(1 - \frac{1}{2}e^{-j\omega})$ Since

$$G(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{(1+\frac{5}{4}e^{-j\omega}-\frac{1}{8}e^{-2j\omega})}{(1-\frac{1}{2}e^{-j\omega})},$$

the difference equation relating the input x[n] and output y[n] is

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{5}{4}x[n-1] - \frac{1}{8}x[n-2].$$

(vi) Here, $H(e^{j\omega})=1/(1+\frac{5}{4}e^{-j\omega}-\frac{1}{8}e^{-2j\omega})$. Therefore, $G(e^{j\omega})=(1+\frac{5}{4}e^{-j\omega}-\frac{1}{8}e^{-2j\omega})$. Since

$$G(e^{j\omega})=\frac{Y(e^{j\omega})}{X(e^{j\omega})}=(1+\frac{5}{4}e^{-j\omega}-\frac{1}{8}e^{-2j\omega})$$

we have

$$g[n] = \delta[n] + \frac{5}{4}\delta[n-1] - \frac{1}{8}\delta[n-2]$$

and the difference equation relating the input x[n] and output y[n] is

$$y[n] = x[n] + \frac{5}{4}x[n-1] - \frac{1}{8}x[n-2].$$

(c) The frequency response of the given system is

$$H(e^{j\omega}) = \frac{e^{-j\omega} - \frac{1}{2}e^{-2j\omega}}{1 + e^{-j\omega} + \frac{1}{4}e^{-2j\omega}}$$

The frequency response of the inverse system is

$$G(e^{j\omega}) = \frac{1}{H(e^{j\omega})} = \frac{e^{j\omega}+1+\frac{1}{4}e^{-j\omega}}{1-\frac{1}{2}e^{-j\omega}}$$

Therefore,

$$g[n] = \left(\frac{1}{2}\right)^{n+1}u[n+1] + \left(\frac{1}{2}\right)^nu[n] + \frac{1}{4}\left(\frac{1}{2}\right)^{n-1}u[n-1]$$

Clearly, g[n] is not a causal impulse response

If we delay this impulse response by 1 sample, then it becomes causal. Furthermore, the output of the inverse system will then be x[n-1]. The impulse response of this causal system is

$$g_1[n] = g[n-1] = \left(\frac{1}{2}\right)^n u[n] + \left(\frac{1}{2}\right)^{n-1} u[n-1] + \frac{1}{4} \left(\frac{1}{2}\right)^{n-2} u[n-2].$$

5.37. Given that

$$x[n] \stackrel{FT}{\longleftrightarrow} X(e^{j\omega}).$$

197

Since z[n] is real, $X(e^{-j\omega}) = X^*(e^{j\omega})$. Therefore,

$$\begin{split} x[n] &= \frac{1}{2\pi} \int_0^{\pi} \mathcal{R}e\{X(e^{j\omega})\}\{e^{\omega n} + e^{-j\omega n}\}d\omega + \frac{j}{2\pi} \int_0^{\pi} \mathcal{I}m\{X(e^{j\omega})\}\{e^{\omega n} - e^{-j\omega n}\}d\omega \\ &= \frac{1}{\pi} \int_0^{\pi} \mathcal{R}e\{X(e^{j\omega})\}2\cos(\omega n)d\omega - \frac{j}{\pi} \int_0^{\pi} \mathcal{I}m\{X(e^{j\omega})\}\sin(\omega n)d\omega \end{split}$$

Therefore,

$$B(\omega) = \frac{1}{\pi} \mathcal{R}e\{X(e^{j\omega})\}\cos(\omega n), \quad \text{and} \quad -\frac{1}{\pi} \mathcal{I}m\{X(e^{j\omega})\}\sin(\omega n).$$

5.39. Let y[n] = x[n] * h[n]. Then

$$\begin{split} Y(e^{j\omega}) &=& \sum_{n=-\infty}^{\infty} \{x[n]*h[n]\}e^{-j\omega n} \\ &=& \sum_{n=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} x[k]h[n-k]e^{-j\omega n} \\ &=& \sum_{k=-\infty}^{\infty} x[k] \sum_{n=-\infty}^{\infty} h[n-k]e^{-j\omega n} \\ &=& \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k}H(e^{j\omega}) \\ &=& H(e^{j\omega}) \sum_{k=-\infty}^{\infty} x[k]e^{-j\omega k} \\ &=& H(e^{j\omega}) X(e^{j\omega}) \end{split}$$

5.40. Let y[n] = x[n] * h[n]. Then using the convolution sum

$$y[0] = \sum_{k=-\infty}^{\infty} x[k]h[-k]$$
 (S5.40-1)

Using the convolution property of the Fourier transform,

$$y[0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})H(e^{j\omega})d\omega$$
 (S5.40-2)

Now let $h[n]=x^*[-n]$. Then $H(\phi^{j\omega})=X^*(\phi^{j\omega})$. Substituting in the right-hand sides of equations (S5.40-1) and (S5.40-2) and equating them,

$$\sum_{k=-\infty}^{\infty} x[k]x^{\bullet}[k] = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(e^{j\omega})X^{\bullet}(e^{j\omega})d\omega.$$

(i) Since

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n},$$

we may write

$$X^{\bullet}(e^{-j\omega}) = \sum_{n=0}^{\infty} x^{\bullet}[n]e^{-j\omega n}.$$

Comparing with the analysis eq. (5.9), we conclude that

$$x^*[n] \stackrel{FT}{\longleftrightarrow} X^*(e^{-j\omega}).$$

Therefore.

$$\mathcal{R}e\{x[n]\} = \frac{x[n] + x^{\bullet}[n]}{2} \xrightarrow{FT} \frac{X(e^{j\omega}) + X^{\bullet}(e^{-j\omega})}{2}$$

(ii) Since

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} x[n]e^{-j\omega n},$$

we may write

$$X(e^{-j\omega}) = \sum_{n=-\infty}^{\infty} x[-n]e^{-j\omega n}.$$

Therefore,

$$x[-n] \stackrel{FT}{\longleftrightarrow} X(e^{-j\omega}).$$

From the previous part we know that

$$x^*[n] \stackrel{FT}{\longleftrightarrow} X^*(e^{-j\omega}).$$

Therefore, putting these two statements together we get

$$x^{\bullet}[-n] \stackrel{FT}{\longleftrightarrow} X^{\bullet}(e^{j\omega}).$$

(iii) From our previous results we know that

$$\mathcal{E}v\{x[n]\} = \frac{x[n] + x[-n]}{2} \xrightarrow{FT} \frac{X(e^{j\omega}) + X(e^{-j\omega})}{2}$$

5.38. From the synthesis equation (5.8) we obtain

$$\begin{split} x[\mathbf{n}] &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega \mathbf{n}} d\omega \\ &= \frac{1}{2\pi} \int_{0}^{\pi} X(e^{j\omega}) e^{j\omega \mathbf{n}} d\omega + \frac{1}{2\pi} \int_{0}^{\pi} X(e^{-j\omega}) e^{-j\omega \mathbf{n}} d\omega \end{split}$$

198

Therefore,

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\omega})|^2 d\omega.$$

Now let $h[n] = z^*[-n]$. Then $H(e^{j\omega}) = Z^*(e^{j\omega})$. Substituting in the right-hand sides of equations (S5.40-1) and (S5.40-2) and equating them,

$$\sum_{k=-\infty}^{\infty} x[k]x^{*}[k] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})Z^{*}(e^{j\omega})d\omega.$$

5.41. (a) The Fourier transform $X(e^{j\omega})$ of the signal x[n] is

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{n=-\infty}^{n_0+N-1} x[n]e^{-j\omega n}$$

Therefore,

$$X(e^{j2\pi k/N}) = \sum_{n=-\infty}^{n_0+N-1} x[n]e^{-j(2\pi/N)kn}$$
. (S5.41-1)

Now, we may write the expression for the FS coefficients of $\hat{x}[n]$ as

$$a_k = \frac{1}{N} \sum_{< N >} \tilde{x}[n] e^{-j(2\pi/N)kn} = \frac{1}{N} \sum_{n=n_0}^{n_0 + N - 1} x[n] e^{-j(2\pi/N)kn}.$$

(Because $x[n]=\tilde{x}[n]$ in the range $n_0\leq n\leq n_0+N-1$). Comparing the above equation with eq. (S5.41-1), we get

$$a_k = \frac{1}{N} X(e^{j2\pi k/N})$$

(b) (i) From the given information

$$\begin{array}{lll} X(e^{j\omega}) & = & 1 + e^{-j\omega} + e^{-2j\omega} + e^{-3j\omega} \\ & = & e^{-j(3/2)\omega} \{e^{j(3/2)\omega} + e^{-j(3/2)\omega}\} + e^{-j(3/2)\omega} \{e^{j(1/2)\omega} + e^{-j(1/2)\omega}\} \\ & = & 2e^{-j(3/2)\omega} \{\cos(3\omega/2) + \cos(\omega/2)\} \end{array}$$

(ii) From part (a),

$$a_k = \frac{1}{N}X(e^{j2\pi k/N}) = \frac{1}{N}2e^{-j(3/2)2\pi k/N}\{\cos(6\pi k/(2N)) + \cos(\pi k/N)\}$$

5.42. (a) $P(e^{j\omega})=2\pi\delta(\omega-\omega_0)$ for $|\omega|<\pi$. This is as shown in Figure S5.42.

(b) From the multiplication property of the Foutier transform we have

$$\begin{split} G(e^{j\omega}) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) P(e^{j(\omega-\theta)}) d\theta \\ &= \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\theta}) 2\pi \delta(\omega-\theta-\omega_0) d\theta \\ &= X(e^{j(\omega-\omega_0)}) \end{split}$$

5.43. (a) Using the frequency shift and linearity properties,

$$V(e^{j\omega}) = \frac{X(e^{j(\omega-\pi)}) + X(e^{j\omega})}{2}$$

(b) Let y[n] = v[2n]. Then

$$Y(e^{j\omega}) = \sum_{n=-\infty}^{\infty} v[2n]e^{-j\omega n}.$$

Since the odd-indexed samples of v[n] are zero, we may put m=2n in the above equation to get

$$Y(e^{j\omega}) = \sum_{m=-\infty}^{\infty} v[m]e^{-j\omega m/2} = V(e^{j\omega/2}).$$

(Note that the substitution of n by 2m is valid only if the odd-indexed samples in the summation are zero.)

(c) x[2n] is a new sequence which consists of only the even indexed samples of x[n]. v[n] is a sequence whose even-indexed samples are equal to x[n]. The odd-indexed samples of v[n] are zero. v[2n] is a new sequence which consists of only the even indexed samples of v[n]. This implies that v[2n] is a sequence which consists of only the even indexed samples of x[n]. This idea is illustrated in Figure S5.43.

From part (a),

$$G(e^{j\omega}) = \frac{X(e^{j(\omega/2-\pi)}) + X(e^{j\omega/2})}{2}$$

- 5.44. (a) The signal $x_1[n]$ is as shown in Figure S5.44.
 - (i) Taking the inverse Fourier transform, the signal x₂[n] is

$$x_2[n] = x_1[n+1].$$

201

(a) Comparing the equation for $x_1(t)$ with the above equation, we obtain

$$x_1(t) = X(e^{-j(2\pi/10)t}).$$

Therefore $x_1(t)$ is as shown in Figure S5.45.

(b) Comparing the equation for $x_2(t)$ with the equation for $X(e^{j\omega})$, we obtain

$$x_2(t) = X(e^{j(2\pi/10)t}) = x_1(-t)$$

Therefore $x_2(t)$ is as shown in Figure S5.45.

(c) We know that $Od\{x[n]\} = (x[n] - x[-n])/2$. Therefore,

$$\frac{X(e^{j\omega}) - X(e^{-j\omega})}{2} = \sum_{n=-\infty}^{\infty} Od\{x[n]\}e^{-j\omega n}.$$

Comparing this with the given equation for $x_3(t)$, we obtain

$$x_3(t) = \frac{X(e^{-j(2\pi/8)t}) - X(e^{j(2\pi/8)t})}{2}.$$

Therefore $x_3(t)$ is as shown in Figure S5.45.

(d) We know that $\Re e\{x[n]\} = (x[n] + x^*[n])/2$. Therefore,

$$\frac{X(e^{j\omega})-X^*(e^{-j\omega})}{2}=\sum_{n=-\infty}^{\infty}\mathcal{R}e\{x[n]\}e^{-j\omega n}.$$

Comparing this with the given equation for $x_4(t)$, we obtain

$$x_4(t) = \frac{X(e^{-j(2\pi/6)t}) + X^*(e^{j(2\pi/6)t})}{2}$$

Therefore $x_4(t)$ is as shown in the Figure S5.45.

5.46. (a) Let $x[n] = \alpha^n u[n]$. Then $X(e^{j\omega}) = \frac{1}{1-\alpha e^{-j\omega}}$. Using the differentiation in frequency property,

$$n\alpha^n u[n] \stackrel{FT}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega} = \frac{\alpha e^{-j\omega}}{(1 - \alpha e^{-j\omega})^2}$$

Therefore,

$$(n+1)\alpha^n u[n] \stackrel{FT}{\longleftrightarrow} j \frac{dX(e^{j\omega})}{d\omega} + X(e^{j\omega}) = \frac{1}{(1-\alpha e^{-j\omega})^2}$$

(b) From part (a), it is clear that the result is true for r = 1 and r = 2. Let us assume that it is also true for k = r − 1. We will now attempt to prove that the result is true for k = r. We have

$$x_{r-1}[n] = \frac{(n+r-2)!}{n!(r-2)!} \alpha^n u[n] \stackrel{FT}{\longleftrightarrow} X_{r-1}(e^{j\omega}) = \frac{1}{(1-\alpha e^{-j\omega})^{r-1}}$$

Figure S5.43

(ii) Taking the inverse Fourier transform, the signal $x_3[n]$ is

$$x_2[n] = x_1[n - 3/2] = \sin(\pi n/3) + \sin(\pi n/2)\cos(3\pi/4) - \cos(\pi n/2)\sin(3\pi/4)$$

This is as shown in Figure S5.44.

(b) From part (a),

$$x_2[n] = x_1[n+1] = w(nT+T).$$

Also,

$$x_3[n] = x_1[n - 3/2] = w(nT - 3T/2).$$

Therefore, $\alpha = -1$ and $\beta = 3/2$.

5.45. From the Fourier transform analysis equation

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

202

From the differentiation in frequency property,

$$nx_{r-1}[n] \stackrel{FT}{\longleftrightarrow} \frac{\alpha(r-1)e^{-j\omega}}{(1-\alpha e^{-j\omega})^{r-1}}.$$

Therefore,

$$\frac{(n+1)x_{r-1}[n+1]}{\alpha(r-1)} \stackrel{FT}{\longleftrightarrow} \frac{1}{(1-\alpha e^{-j\omega})^r}.$$

The left hand side of the above expression is

$$\frac{(n+1)x_{r-1}[n+1]}{\alpha(r-1)} = \frac{(n+r-1)!}{n!(r-1)!}\alpha^n u[n] = x_r[n].$$

Therefore, we have shown that the result is valid for r if it is valid for r-1. Since, we know that the result is valid for r=2, we may conclude that it is valid for r=3, r=4, and so on.

- 5.47. (a) If X(e^{jω}) = X(e^{j(ω-1)}) then X(e^{jω}) is periodic with a period of 1. But we already know that X(e^{jω}) is periodic with a period of 2π. This is only possible if X(e^{jω}) is a constant for all ω. This implies that x[n] is of the form kδ[n] where k is a constant. Therefore, the given statemet is true.
 - (b) If X(e^{jω}) = X(e^{j(ω-π)}) then X(e^{jω}) is periodic with a period of π. We also know that X(e^{jω}) is periodic with a period of 2π. Both these conditions can be satisfied even if X(e^{jω}) has some arbitrary shape in the region 0 ≤ |ω| ≤ π/2. Therefore, X(e^{jω}) need not necessarily be a constant. Consequently, x[n] need not be just an impulse. Therefore, the given statement is false.

- (c) We know from Problem 5.43 that the inverse Fourier transform of $X(e^{j\omega/2})$ is the sequence $v[n] = (x[n] + e^{y\pi}x[n])/2$. The even-indexed samples of v[n] are identical to the even-indexed samples of x[n]. The odd-indexed samples of v[n] are zero. If $X(e^{j\omega}) = X(e^{j\omega/2})$, then x[n] = v[n]. This implies that the even-indexed samples of x[n] are zero. Consequently, x[n] does not necessarily have to be an impulse. Therefore, the given statement is false.
- (d) From Table 5.1 we know that the inverse Fourier transform of $X(e^{j2\omega})$ is the timeexpanded signal

 $x_{(2)}[n] = \left\{ egin{array}{ll} x[n/2], & n=0,\pm 2,\pm 4,\cdots \\ 0, & \mathrm{otherwise} \end{array} \right.$

If $X(e^{j\omega}) = X(e^{j2\omega})$, then $x[n] = x_{(2)}[n]$. This is possible only if x[n] is an impulse Therefore, the given statement is true

5.48. (a) Taking the Fourier transform of both equations and eliminating $W(e^{j\omega})$, we obtain

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{3 - \frac{1}{2}e^{-j\omega}}{(1 - \frac{1}{2}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}$$

Taking the inverse Fourier transform of the partial fraction expansion of the above

 $h[n] = 4\left(\frac{1}{2}\right)^n u[n] - \left(\frac{1}{4}\right)^n u[n].$

(b) We know that

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{3-\frac{1}{2}e^{-j\omega}}{\left(1-\frac{1}{2}e^{-j\omega}\right)\left(1-\frac{1}{4}e^{-j\omega}\right)}.$$
 Cross-multiplying and taking the inverse Fourier transform, we obtain

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = 3x[n] - \frac{1}{2}x[n-1].$$

- 5.49. (a) (i) Consider the signal $x[n] = ax_1[n] + bx_2[n]$, where a and b are constants. Then, $X(e^{j\omega}) = aX_1(e^{j\omega}) + bX_2(e^{j\omega})$. Also let the responses of the system to $\tau_1[n]$ and $x_2[n]$ be $y_1[n]$ and $y_2[n]$, respectively. Substituting for $X(e^{j\omega})$ in the equation given in the problem and simplifying we obtain $Y(e^{j\omega}) = aY_1(e^{j\omega}) + bY_2(e^{j\omega})$. Therefore, the system is linear
 - (ii) Consider the signal $x_1[n] = x[n-1]$. Then, $X_1(e^{j\omega}) = e^{-j\omega}X(e^{j\omega})$. Let the response of the system to this signal be $y_1[n]$. From the given equation,

$$\begin{array}{lll} Y_1(e^{j\omega}) & = & 2X_1(e^{j\omega}) + e^{-j\omega}X_1(e^{j\omega}) - \frac{dX_1(e^{j\omega})}{d\omega} \\ \\ & = & e^{-j\omega}\left[2X(e^{j\omega}) + e^{-j\omega}X(e^{j\omega}) - \frac{dX(e^{j\omega})}{d\omega}\right] + je^{-j\omega}X(e^{j\omega}) \\ & \neq & e^{-j\omega}Y(e^{j\omega}) \end{array}$$

Therefore, the system is not time invariant

205

(b) From the given information,

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{(1-\frac{1}{2}e^{-j\omega})^2}{2(1-\frac{1}{4}e^{-j\omega})^2}.$$

We now want to find $X(e^{j\omega})$ when $Y(e^{j\omega}) = (1/2)e^{-j\omega}/(1+\frac{1}{2}e^{-j\omega})$. From the above

 $X(e^{j\omega}) = \frac{e^{-j\omega}(1 - \frac{1}{4}e^{-j\omega})^2}{(1 - \frac{1}{2}e^{-j\omega})^2(1 + \frac{1}{2}e^{-j\omega})}$

Taking the inverse Fourier transform of the partial fraction expansion of the above

$$x[n] = \frac{3}{8} \left(-\frac{1}{2} \right)^{n-1} u[n-1] + \frac{3}{8} \left(\frac{1}{2} \right)^{n-1} u[n-1] + \frac{1}{8} n \left(\frac{1}{2} \right)^{n-1} u[n-1].$$

5 51. (a) Taking the Fourier transform of h[n] we obtain

$$H(e^{j\omega}) = Y(e^{j\omega})/X(e^{j\omega}) = \frac{\frac{3}{2} - \frac{1}{2}e^{-j\omega}}{1 - \frac{3}{4}e^{-j\omega} + \frac{1}{8}e^{-j2\omega}}$$

Cross-multiplying and taking the inverse Fourier transform we obtain

$$y[n] - \frac{3}{4}y[n-1] + \frac{1}{8}y[n-2] = \frac{3}{2}x[n] - \frac{1}{2}x[n-1].$$

(b) (i) Let us name the intemediate output w[n] (See Figure S5.51)

Figure S5.51

We may then write the following difference equations:

$$y[n] + \frac{1}{2}y[n-1] = \frac{1}{4}w[n] + w[n-1]$$

$$w[n] - \frac{1}{3}w[n-1] = x[n] - \frac{1}{2}x[n-1]$$

 $w[n]-\frac{1}{3}w[n-1]=x[n]-\frac{1}{2}x[n-1].$ Taking the Fourier transform of both these equations and eliminating $W(e^{j\omega})$, we

 $H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\frac{1}{4} + \frac{7}{8}e^{-j\omega} - \frac{1}{2}e^{-2j\omega}}{1 - \frac{1}{4}e^{-2j\omega}}.$

Cross-multiplying and taking the inverse Fourier transform we obtain

$$y[n] - \frac{1}{4}y[n-2] = \frac{1}{4}x[n] + \frac{7}{8}x[n-1] - \frac{1}{2}x[n-2].$$

(iii) If $x[n] = \delta[n]$, $X(e^{j\omega}) = 1$. Then,

$$Y(e^{j\omega}) = 2 + e^{-j\omega}.$$

Therefore, $y[n] = 2\delta[n] + \delta[n-1]$.

(b) We may write

$$Y(e^{j\omega}) = \frac{1}{2\pi} \int_{\omega-\pi/4}^{\omega+\pi/4} X(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta,$$

where $H(e^{j\omega})$ is as shown in the Figure S5.49.

Using the multiplication property of the Fourier transform and Table 5.2, we obtain

$$y[n] = 2x[n] \frac{\sin(\pi n/4)}{n}$$

5.50. (a) (i) From the given information

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1 - \frac{1}{2}e^{-j\omega}}{(1 - \frac{1}{3}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}.$$

Taking the inverse Fourier transform, we obtain

$$h[n] = 3\left(\frac{1}{4}\right)^n u[n] - 2\left(\frac{1}{3}\right)^n u[n].$$

(ii) From part (a), we know that

$$\frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{1 - \frac{1}{2}e^{-j\omega}}{(1 - \frac{1}{3}e^{-j\omega})(1 - \frac{1}{4}e^{-j\omega})}$$

Cross-multiplying and taking the inverse Fourier transform

$$y[n] - \frac{7}{12}y[n-1] + \frac{1}{12}y[n-2] = x[n] - \frac{1}{2}x[n-1]$$

206

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})} = \frac{\frac{1}{4} + \frac{7}{8}e^{-j\omega} - \frac{1}{2}e^{2j\omega}}{1 - \frac{1}{4}e^{-2j\omega}}.$$

(iii) Taking the inverse Fourier transform of the partial fraction expansion of H(e^{jω}),

$$h[n] = 2\delta[n] - \frac{21}{16} \left(-\frac{1}{2}\right)^n u[n] + \frac{7}{16} \left(\frac{1}{2}\right)^n u[n]$$

5.52. (a) Since h[n] is causal, the nonzero sample values of h[n] and h[-n] overlap only at n=0.

$$\mathcal{E}v\{h[n]\} = \frac{h[n] + h[-n]}{2} = \left\{ \begin{array}{ll} h[n]/2, & n > 0 \\ h[0], & n = 0 \\ h[-n]/2, & n < 0 \end{array} \right.$$

In other words,

$$h[n] = \begin{cases} 2\mathcal{E}v\{h[n]\}, & n > 0 \\ \mathcal{E}v\{h[0]\}, & n = 0 \\ 0, & n < 0 \end{cases}$$
 (S5 52-1)

Now note that if

$$h[n] \stackrel{FT}{\longleftrightarrow} H(e^{j\omega})$$

then

$$\mathcal{E}v\{h[n]\} = \frac{h[n] + h[-n]}{2} \overset{FT}{\longleftrightarrow} \mathcal{R}e\{H(e^{j\omega})\}$$

Clearly, we can recover $\mathcal{E}v\{h[n]\}$ from $\mathcal{R}e\{H(e^{j\omega})\}$. From $\mathcal{E}v\{h[n]\}$ we can use eq.(S5.52-1) to recover h[n]. Obviously, from h[n] we can once again obtain $H(e^{j\omega})$. Therefore, the system is completely specified by $\mathcal{R}e\{H(e^{j\omega})\}$.

(b) Taking the inverse Fourier transform of $\mathcal{R}e\{H(e^{j\omega})\}$, we obtain

$$\mathcal{E}v\{h[n]\} = \delta[n] + \frac{\alpha}{2}\delta[n-2] + \frac{\alpha}{2}\delta[n+2]$$

Therefore.

$$h[n] = \delta[n] + \alpha \delta[n-2],$$

and

$$H(e^{j\omega})=1+\alpha e^{-j2\omega}.$$

(c) Since h[n] is causal, the nonzero sample values of h[n] and h[-n] overlap only at n = 0.

$$\mathcal{O}d\{h[n]\} = \frac{h[n] - h[-n]}{2} = \left\{ \begin{array}{ll} h[n]/2, & n > 0 \\ 0, & n = 0 \\ -h[-n]/2, & n < 0 \end{array} \right.$$

In other words

$$h[n] = \begin{cases} 2Od\{h[n]\}, & n > 0 \\ \text{some value}, & n = 0 \\ 0, & n < 0 \end{cases}$$
 (S5.52-2)

Now note that if

$$h[n] \stackrel{FT}{\longleftrightarrow} H(e^{j\omega})$$

then

$$Od\{h[n]\} = \frac{h[n] - h[-n]}{2} \stackrel{FT}{\longleftrightarrow} jIm\{H(e^{j\omega})\}.$$

Clearly, we can recover $Od\{h[n]\}$ from $Im\{H(e^{j\omega})\}$. From $Od\{h[n]\}$ we can use eq.(S5.52-2) to recover h[n] (provided h[0] is given). Obviously, from h[n] we can once again obtain $H(e^{j\omega})$. Therefore, the system is completely specified by $Im\{H(e^{j\omega})\}$

(d) Let $Im\{H(e^{j\omega})\} = \sin \omega$. Then,

$$Od\{x[n]\} = \frac{1}{2}\delta[n-1] - \frac{1}{2}\delta[n+1].$$

Therefore.

$$h[n] = h[0]\delta[n] + \delta[n-1].$$

We may choose two different values for h[0] (say 1 and 2) to obtain two different systems whose frequency responses have imaginary parts equal to $\sin \omega$.

5.53. (a) The analysis equation of the Fourier transform is

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

Comparing with eq. (P5.53-2), we

$$\tilde{X}[k] = \frac{1}{N}X(e^{j(2\pi k/N)}).$$

(b) From the figures we obtain

$$X_1(e^{j\omega}) = 1 - e^{-j\omega} + 2e^{-3j\omega}$$

$$X_2(e^{j\omega}) = -e^{2j\omega} - e^{j\omega} - 1 + e^{-2j\omega} + e^{-3j\omega} + 2e^{-j4\omega} - e^{-j5\omega} + 2e^{-j7\omega}$$

Now

$$X_1(e^{j(2\pi k/4)}) = 1 - e^{-j\pi k/2} + 2e^{-3j\pi k/2}$$

and

$$X_2(e^{j(2\pi k/4)}) = 1 - e^{-j\pi k/2} + 2e^{-3j\pi k/2} = X_1(e^{j(2\pi k/4)}).$$

209

5.55. (a) (i) From Table 5.2, we have

$$X(e^{j\omega}) = 2\pi \sum_{k=-\infty}^{\infty} \delta(\omega - 2\pi k)$$

- (ii) When M = 1, $P(e^{j\omega}) = e^{j\omega} + 1 + e^{-j\omega} = 1 + 2\cos\omega$.
- (iii) When M = 10, we may use Table 5.2 to find that

$$P(e^{j\omega}) = \frac{\sin(21\omega/2)}{\omega/2}$$

Figure S5.55

- (c) We have $W(e^{j\omega}) = \frac{\sin^2[(M+1)\omega/2]}{\sin^2(\omega/2)}$. The plots are as shown in Figure S5.55
- (d) The plots are as shown Figure S5.55.

- 5.54. (a) From eq. (P5.54-1) it is clear that to compute X̄[k] for one particular value of k, we need to perform N complex multiplications. Therefore, in order to compute X̄[k] for N different values of k, we need to perform $N.N = N^2$ complex multiplications.
 - (b) (i) Since f[n] = x[2n], we have f[0] = x[0], f[1] = x[2], ..., f[(N/2) 1] = x[N 2]. Since x[n] is nonzero only in the range $0 \le n \le N 1$, f[n] is nonzero only in the range $0 \le n \le (N/2) - 1$.

Similarly, since g[n] = x[2n+1], we have g[0] = x[1], g[1] = x[3], \cdots , g[(N/2) - 1] = x[N]. Since x[n] is nonzero only in the range $0 \le n \le N-1$, g[n] is nonzero only in the range $0 \le n \le (N/2) - 1$.

(ii) We may rewrite eq. (5.54-1) as

$$\bar{X}[k] = \frac{1}{N} \sum_{n=0}^{(N/2)-1} x[2n] W_N^{2nk} + W_N^k \frac{1}{N} \sum_{n=0}^{(N/2)-1} x[2n+1] W_N^{2nk}.$$

Since $W_N^{2nk} = W_{N/2}^{nk}$, we may rewrite the above ex-

$$\begin{split} \tilde{X}[k] &= \frac{1}{N} \sum_{n=0}^{(N/2)-1} f[n] W_{N/2}^{nk} + W_{NN}^{k} \sum_{n=0}^{(N/2)-1} g[n] W_{N/2}^{nk} \\ &= \frac{1}{2} \tilde{F}[k] + \frac{1}{2} W_{N}^{k} \tilde{G}[k] \end{split} \tag{S5.54-1}$$

(iii) We have

$$\tilde{F}[k+N/2] = \frac{2}{N} \sum_{n=0}^{(N/2)-1} f[n]W_{N/2}^{kn}W_{N/2}^{nN/2} = \tilde{F}[k].$$

Similarly.

$$\tilde{G}[k+N/2] = \tilde{G}[k].$$

- (iv) Since $\tilde{F}[k]$ is a N/2 point DFT, we may use an approach similar to the one in part (a) to show that we need $N^2/4$ complex multiplications to compute it. Similarly we may show that the computation of $\tilde{F}[k]$ requires $N^2/4$ multiplications. From eq. (S5.54-1), it is clear that we need $N^2/2 + N$ complex multiplications to compute
- (c) By decomposing g[n] and f[n] into their odd and even indexed samples, we can bring down the number of computations to $N^2/4 + N/2$. Repeating this decomposition $\log_2 N$ times, we make the required computation $N \log_2 N$. We tabulate below the computations required by the direct method and the FFT method for values of N.

N	Direct method	FFT method
32	1024	160
256	65536	2048
1024	1048576	10240
4096	16777216	49152

210

5.56. (a) We have

$$\begin{split} X(e^{j\omega_1},e^{j\omega_2}) &= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} x[m,n]e^{-j(\omega_1 m + \omega_2 n)} \\ &= \sum_{n=-\infty}^{\infty} \left[\sum_{m=-\infty}^{\infty} x[m,n]e^{-j\omega_1 m} \right] e^{-j\omega_2 n} \\ &= \sum_{n=-\infty}^{\infty} X(e^{j\omega_1},n)e^{-j\omega_2 n} \end{split}$$

Therefore, we may write

$$X(e^{j\omega_1}, n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega_1}, e^{j\omega_2}) e^{j\omega_2 n} d\omega_2.$$

From this we obtain

$$x[m,n] = \frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} X(e^{j\omega_1}, e^{j\omega_2}) e^{j\omega_1 m} e^{j\omega_2 n} d\omega_1 d\omega_2.$$

(b) We may easily show that

$$X(e^{j\omega_1},e^{j\omega_2})=A(e^{j\omega})B(e^{j\omega}).$$

- (c) We use the result of the previous part in many of the problems of this part.
 (i) X(e^{jω₁}, e^{jω₂}) = e^{-jω₁}e^{(jω₂}.

(ii) $X(e^{j\omega_1}, e^{j\omega_2}) = \left[\frac{e^{-j2\omega_2}}{(1-\frac{1}{2}e^{-j\omega_2})}\right] \left[\frac{1}{(1-\frac{1}{2}e^{-j\omega_1})}\right]$

(iii)
$$X(e^{j\omega_1}, e^{j\omega_2}) = \left[\frac{1}{(1-\frac{1}{2}e^{-j\omega_2})}\right] \left[\pi \sum_{k=-\infty}^{\infty} \delta(\omega_1 - \frac{2\pi}{3} - 2\pi k) + \pi \sum_{k=-\infty}^{\infty} \delta(\omega_1 + \frac{2\pi}{3} - 2\pi k)\right]$$

(iv) Here $x[n, m] = \{u[m+1] - u[m-2]\}\{u[n+4] - u[n-5]\}$. Therefore,

$$X(e^{j\omega_1}, e^{j\omega_2}) = \begin{bmatrix} \frac{\sin(7\omega_2/2)}{\sin(\omega_2/2)} \end{bmatrix} \begin{bmatrix} \frac{\sin(3\omega_1/2)}{\sin(\omega_1/2)} \end{bmatrix}$$

(v) From the definition of the 2D Fourier transform we obtain

$$X(e^{j\omega_1},e^{j\omega_2}) = \frac{e^{j(\omega_1+3\omega_2)}}{1-e^{-j\omega_1}} \left[\frac{1-e^{-j7(\omega_1+\omega_2)}}{1-e^{-j(\omega_1+\omega_2)}} - e^{-j\omega_1} \left(\frac{1-e^{-j7(3\omega_1+\omega_2)}}{1-e^{-j(3\omega_1+\omega_2)}} \right) \right]$$

(vi) From the definition of the 2D Fourier transform we obtain

$$X(e^{j\omega_1}, e^{j\omega_2}) = \frac{\pi}{2} \sum_{l=-\infty}^{\infty} \sum_{r=-\infty}^{\infty} \left[\delta(\omega_1 - \frac{2\pi}{3} + 2\pi l)\delta(\omega_2 - \frac{\pi}{3} + 2\pi r) - \delta(\omega_1 + \frac{2\pi}{3} + 2\pi l)\delta(\omega_2 + \frac{\pi}{3} + 2\pi r)\right].$$

(d) (i) $X(e^{j(\omega_1-W_1)}, e^{j(\omega_2-W_2)})$

(ii)
$$X(e^{2\omega_1}, e^{3\omega_2})$$

(iii)
$$\frac{1}{4\pi^2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} X(e^{j\zeta}, e^{j\theta}) H(e^{j(\omega_1-\zeta)}, e^{j(\omega_1-\theta)}) d\zeta d\theta$$