Therefore, the frequency resg of the inverse is

- 1 —w? + 6w+ 9
Glw) = AQw)  —w?+3jw+2
The differential equation describing the inverse system is
dylt) | dut)
= T
Using partial fraction expansion followed by application of the inverse Fourier trans-
form, we find the impulse responses to be

() = 5(t) = 3~ Hu(t) + 2te™u(t)

+ 2y(t) = f% + 61':.{Tt) + 9z(t).

and
g(t) = &(t) — e~ Hult) + e~ u(t).

4.52. (a) Since the step response is s(t) = (1 — e~4?)u(t), the impulse response has to be
1
=1 -
h(g) = ze~/Aul).

The frequency response of the system is

. 1/2
H{jw) = T+ =

We now desire to build an inverse for the above system. Therefore, the frequency
response of the inverse system has to be

Cliw) = ﬁ)— =?[%+ju] "
Taking the inverse Fourier transform we ohtain
g(t) = 8(t) + 2u 2).
(b) When sin(wt) passes through the inverse system, the cutput will be
y(t) = sin{wt) + 2w cos(wt).

We see that the output is directly proportional to w. Therefore, as w increases, the
contribution to the output due to the noise also increases.

(¢) In this case we require that |H(jw)| € 4 when w = 6. Since
1
: 2
IHGF =

we require that

1 1
a® + 36 BT
Therefore, a £ ﬁ—‘
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Therefore,
1 1
X{wn wn)

+ - - -
(2% 51 + jun) (2 + Jwr — Jua) | (2+ Jwa)(2 4 jun + Jun)
1 1

BT @ + Jor —dwn) | @ g — Jn - ju)
2 1

B o = e @ — g + gwn) | G2 — Jun — 1)

(d) =ty 13) = e+ 20)y(e, + 23)
(e) (i) e Tre T X (jun, jws)
i) X (S.9%)

{iif) X (g, Jua) H (jun, jon)
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4.53. (a) From the given definition we obtain
-3
X(wi, jwe) = f F,,(11‘iz)ﬂ—i(um-hnnld"dt,
- -

f’ U‘ z(ty, hk"'"‘d‘l] eTItige,

X (w, tp)e gty
e

]

{b) From the result of part (a) we may write

80
z(ty, 1) = FToHFTIH X Gun, jun)}) = é[ f’ X (o ju )0 430 s iy

(€) () XGuwn,wa) = Ty Ty

i : _ [leeUse|1omtizae)] [ e (i) T o ]
(ii) X (jwi,w2) = (E3rNI(E) * u”u,;{‘u;mi
ey . o 3_,—0*1-»:I_,-cH-MI_1|_,-tlc:-|\m_c-{lu-n_14_
(ki) XIU-::‘:::{I— PLGED.CER) ’
— - -z w3
-“+;UI ﬂi‘-mi & -July Juy
» _ 1 [etmaiegiteital)peivai—emdi tnd
(iv) X{wr,w2) = — 555 |© = -:ln-:*-r:): L
+v“il\-z"‘l""”)-l—t““‘[{""'!"‘”—1)
=3l —wn)
(v) As shown in the Figure $4.53, this signal has six different regions in the (ti, )

plane, @ é;

®|@
Figure 34.33
The signal z(t),3) is given by

e~ in region 1
e in region 2

et in region 3
() = edfa in :g'un 4
el in region 5
e~ in region 6
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Chapter 5 Answers )
5.1. () Let zfn] = (1/2)"'uln - 1]. Using the Fourier transform analysis equation (5.9), the
Fourier transform X (e™) of this sigoal is

Z z[nje™ "

n=—00

= Y (2te

m=l

o
- Z(Uz]"ﬂ""{“u
n=0

X(e™)

T TaUS |
(1 - (1/2)e¥)

(b) Let z[n] = {1/2)I"Y. Using the Fourier transform analysis equation (5.9), the Fourier

transform X (/) of this signal is
o0
X(e¥) = z [nje "
Il.o—ﬂ .
= 3 (et S ale
n=—-o0 n=1

The second summation in the right-hand side of the above equation is exactly the same
as the result of part (a). Now,

o e
~(a-1)g=sum _ (n41)giom o (1 !
ﬂ:,i;”llfz} e gufz) & (z)l-u,rz}ew'
Therefore,

_ (X i =i 1 _ 07570
X (2) T—(/me ¢ ’ (1—(1/2)e-7) ~ 1.25 - cosw’

5.2, (a) Let z[n] = 8[n — 1] + 8{n + 1]. Using the Fourier transform analysis equation (5.9, the
Fourier transform X (&) of this signal is

o0
X(e) = 2 z|n)e "
n=-00
= e 4 e =2c08w
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{b) Let zn) = d[n +2] = §[n = 2). Using the Fourier transform analysis equation (5.9), the
Fourier transform X (&) of this signal is

X)) = z o

N =

M _ ¢~ = 25 sin(2w)

5.3, We note from Section 5.2 that a periodic signal £[n] with Fourier series representation
x[n] - E ntgjkﬂﬂﬂl“
k=eN>
has a Fourier transform

X(e¥) = i Zraxd (w— 2—;,5) .

k=00
{a) Consider the signal z,[n] = sin(§n + 7). We note that the fundamental period of the
signal z;{n) is N = 6. The signal may be written as
2fn] = (1/27) 3D — (1/25)eHEnHD) = (1/25) F % - (1/2j)e 7 Fe TN,
From this, we obtain the non-zero Fourier series coefficients ax of z1[n] in the range

-2<k<3as )
ay = (1/2j)%,  aoy = —(1/2))e 7%

Therefore, in the range —x < w < =, we ohtain
2
X(e™) = Zneylw -~ %")nm_.s{w + ~5'5}
(=/ 45w — 2m[6) — e 7™ /4G(w + 27 /6)}

(b) Consider the sigoal za[n] = 2 + cos(§n + f). We note that the fundamental period of
the signal zy(n] is N = 12. The signal may be written as

nifn] = 24 (1)) 4 (1) G D =24 /2@t HR 4 2 TEe B

From this, we obtain the non-zero Fourier series cocfficients ax of z2[n) in the range
~5<k<6as 2 _
a=2 o=/,  a=(1/2e7E

Therefore, in the range — < w < 7, we obtain
X(&Y) = 2maod(w) + 2maiblw - f—;) + 2ma_ 6w + %)
= dwdw) + w{"P8(w — x/6) + ¢ /4w + x/6)}
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Using the time shifting property (Sec. 5.3.3) on this, we have
z=n+1) &L e X (") and  z[-n-1] EL prem (om0
Therefore,
nin = zf-n+ 1] +zf-n=1] £ HMX(e) + X ()
& ax(eM)cosw
(b) Using the time reversal property (Sec. 5.3.6), we have
al=n] 5 X (™)
Using the conjugation property on this, we have
2*[-n] &5 X* (&)
Therefore, .
zfn] = (1/2)(z"[-n) + zln)) D (1/2(X() + X ()
&L Re(x(e™)}

(e) Using the differentiation in frequency property (Sec. 5.3.8), we have
it
nz[n] el jd—xz )
Using the same property a second time,

n?zn) &

X (%)
du?
Therefore,
e dX (e »
zaln] = nzn] - 2nzfn] + 1 £ —‘%{_‘;—) - 2;—‘:”)- + X (&)
5.7. {(a) Consider the signal yy[n] with Fourier transform

10
Yi(e) =Y sintkw).
k=1
We see that ¥} {e/) is real and odd. From Table 5.1, we know that the Fourier transform
of a real and odd sigoal is purely imaginary and odd. Therefore, we may say that the
Fourier transform of a purely imaginary and odd signal is real and odd. Using this
observation, we conelude that y;[n] is purely imaginary and odd.
Note now that

Xy(&¥) = e FNi(e®).
Therefore, 71|n] = g1[n — 1. Therefore, z1[n] is also purely imaginary. But zi[n] is
neither even nor odd.
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5.4

5.5.

5.6.

5.8.

(1) Using the Fourier transform synthesis equation (5.8),

zy[n]

{lﬁw}f}{l(e"’)e""m

I

{1,‘2«}-/. [278(w) + 78w — = /2) + wé(w + 7/2)]" " dw

= &% (1) (1/2)e =/
= 1+ cos(wn/2)

(b) Using the Fourier transform synthesis equation (5.8),
2afn) = (1/27) f " Xa(e*)e s

= =(1/27) fu 2jel"de + (1/27) fn '25.9”"&.;

_ . 1 - G_Jl' dnl — j
= (im0 [__jn - ]
= —(/(m) sind(nn/2)

From the given information,
z[n] = (1/2x) 'X{c"“')c“”"dw

= /) [ @YX Do

(1/27) 1 'I:c‘i“e""“du

_ sin(§(n—3/2))
T T w(n—3/2)

The signal z[n] is zero when $(n — 3/2) is a nonzero integer multiple of 7 or when
[n| = oo. The value of J(n — 3/2) ean never be such that it is a nonzero integer multiple
of =, Therefore, z[n] = 0 only for n = too.

Tk hout this problem, we that

zfn] £5 Xy ().

(a) Using the time reversal property (Sec. 5.3.6), we have

2]-n] €5 X (e*)
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(b) We note that X;(e™) is purely imaginary and odd. Therefore, r;3[n| has to be real
and odd.

(c) Consider a signal y3[n] whose magnitude of the Fourier transform is |Y3(e’~)| = A(w),
and whose phase of the Fourier transform is <{¥a(e?*)} = =(3/2)w. Since [Ya(e’¥)| =
|¥3(e=™)| and «{Y3(e™}} = —a{Y¥3(e~#)}, we may conclude that the signal ya[n] is
real (See Table 5.1, Property 5.3.4).

Now, consider the signal z3[n] with Fourier transform Xj(e?) = Yj(e/™)e?” =
—Ya(jw). Using the result from the previous paragraph and the linearity property of the

Fourier transform, we may lude that z3[n] has to real. Since the Fourier transform
X3(e™) is neither purely imaginary nor purely real, the signal z4[n] is neither even
nor odd.

Consider the signal
[y =l
Ll { 0, nl>1
From Table 5.2, we know that
sin(3w/2)
sin(w/2}

Using the accumulation property (Table 5.1, Property 5.3.5), we have

z1[n] LN X&) =

3 alk] E ﬁx.(#) F 71X () T 6w - 2mk).
=00 k=g

Therefore, in the range —7 < w < 7,

Y nil) E5 X () + 3.

k=—oo

Also, in the range ~-T < w =< =,
15 2nb(w)

Therefore, in the range =7 < w < =,
n pr 1
1 k] & ——— o .
zfn] = +t§j:,1 165 —pXi(e) + 5mé(w)

The signal z[n)] has the desired Fourier transform. We may express z[n] mathematically as

n 1, n< -1
=1+ Y mlk={ n+3, -lgn<l

k== . n=2
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5.9.

From Property 5.3.4 in Table 5.1, we know that for a real signal z[nl,
Od{zin)} &5 JIm{X ()}
From the given information,

JIm{X(e)} = ‘ jsinw — 7 sin 2w y
= (/2 - e~ £ 4 e~ IY)

Therefere,
Qd{z[n]} = IFT{jIm[X(:"“]}} = (1/2)(f[n + 1] - Sjn=1]-4&in+ 2]+ dfn = 2))

Od{zln]} = x————“ =3ln

2

We also know that

and that zln] =0 for n > 0. Therefore,
zin) = 20d{z[n]} = Sn+ 1] =éln+ 2, forn<O

Now we only have to find z[0]. Using Parseval’s relation, we have
o0 o0
o [ = 3 el
n S =og nT =0
From the given information, we can write
-1
3= (alo)? + 3 lelnll? = (o) +2
LEEE- -]

This gives z[0] = %L But since we are given that z[0] > 0, we conclude that z[0] = L.

Therefore,
z[n} = é[n] + Sl + 1] - bin + 2}

5.10. From Table 5.2, we know that

513,

1) ] 5 —
3 ufn] 1-%6‘1”

Using Property 5.3.8 in Table 5.1,

X" d 1 ye
el = (3) win) 5 X =i {iT,_T«} =qo e
Therefore,

f:n (%)“ = i zfn] = X(e*) =2

n=l n=-08
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The plot of FT {'21‘-,'3!1} is shown in Figure 55.12. It is clear that if ¥ (¢™) = Xa(e*),
then (#/2) €w. < 7.

When two LTI systems are ted in parallel, the impul of the overall system
is the surm of the impulse responses of the individual systems. Therefore,

h[n] = hyin] + haln].
Using the lincarity property {Table 5.1, Property 5.3.2),
H(e¥) = Hy(@¥) + Hale)

Given that hy[n] = (1/2)"uln], we obtain
T
Hile™) = e

‘Therefore,
1245 1 uel
Wl o 2 = — -
Ha(e™) 12=Te i +e- 4% 1= ée"“ 1 —gem®

Tuking the inverse Fourier transform,
ha[n] = -2 (1—‘;) uln]-

From the given information, we have the Fourier transform (G(e?*) of g[n] to be
Gle™) = gl0] + gl1)e™

Also, when the input to the system is z[n] = (1/4)"uln], the autput is g[n). Therefore

G(e™)
=
H(eM) = XY
From Table 5.2, we obtain
X)) = ——-—1 = %"’“.

Therefore,
(o) = (0] + sltle ) (1 — e} = ol0)+ {al] — Jololye - ol
Clearly, hin] is a three point sequence.

We have ) _
H(e™) = hfo] + hl]e™™ + h{2)e ™
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5.11. We kpow from the time expansion property (Table 5.1, Property 5.3.7) that
aln] = zln) <5 G(e™) = X(¢™).
Therefore, G(e?) is obtained by compressing X (&™) by a factor of 2. Since we know that

X(e?*) is periodic with a period of 2w, we may conclude that G(e’*) has a period which is
(1/2)2% = =. Therefore,

Gle™) = Gl )

zyn] = (s_i:%l.).

From Table 5.2, we obtain the Fourier transform of z;[n] to be

- 1, 0wl sk
xen-{5 el

and o = 7.

5.12. Consider the signal

The plot of X;{e™) is as shown in the Figure $5.12. Now consider the signal xa[n| =
{z3[n])?. Using the multiplication property (Table 5.1, Property 5.5), we obtain the Fourler
tranform of z2[n] to be

Xa(e®) = (1/20) X (%) » Xa ()]

This is plotted in the Figure S5.12. ()
:.u“%m =
i y e
Lo U " x o K Teo
3 L T & =
G
’1 F1 {_yn g:‘n\‘l!
L
‘ —
-w,_ © w,
Figure $5.12

From Figure $5.12 it is clear that Xo(e™) is zero for jw] > #/2. By vsing the convolution
property (Table 5.1, Property 5.4), we note that

Y(e¥) = Xa(@)FT {"_"“"—") } .

T
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H(Ee) = A{o] + h{tJe e + hf2je™ V")
R{0] — A[1]e™? + Af2le ¥
We see that H(e) = H(e"©~") only if hl1] =0.

We also have
H(E™?) = h{0] + h{1]e™?™/ + h[2)e="?
hlo) — h{2)
Since we are also given that H(e™/2) = 1, we have
hl0) — A2 = 1. (S5.14-1)
Now note that
gl = hin]« {(1/4)"uln]}
2
= ToAE/4) Fuln - K]
k=0
Evaluating this equation at n = 2, we have
glzj=0= ll—sk'[o] + %h[i] +h(2)
Since h(1] =0,
1
Rk{ﬂ} + h[2] = 0. (55.14-2)

Solving equations (55.14-1) and (85.14-2), we obtain
16 1
MU] =1 and h[?] =-=17
Therefore,
16 1
hin] = 1_76{“] - ﬁé[n -2
5.15. Consider z|n| = sin(wen)/(mn). The Fourier transform X (%) of z[n] is as shown in Figure

§5.15. We note that the given signal y[n] = z[n)z[n]. Therefore, the Fourier transform
¥ (&) of yln] is

o T
() = 5 L XX,

Employing the approach used in Example 5.15, we can convert the above periodic conve-
lution into an aperiodic signal by defining

(&) = { ;‘:(e"u)-

- wET
otherwise

176



Then we may write & :
Y (&) = 2-‘; j_ m;‘r(a“)x(eﬁ“-‘iw,

This is the aperiodic convolution of the gular pulse X(&) shown in Figure 55.15
with the periodic square wave X (), The result of this convolution is as shown in the

Figure 55.15 e
s :
1 e 3] i(&:pl
i .
' —y
T A o AT 20 w
-1 . <Ll
e SE )
—2u Py LiE™ va
Figure 56.15

From the figure, it is clear that we require —1+ (2uw/x) to be 1/2. Therefore, w, = 3n/d.

3
; 1 1 wk
R0 o {m ’ ["?ﬂ““ - T’]}

where s denotes aperiodic convolution. ‘We may also rewrite this as a periodic eanvolution

5.16. We may write

X(ev) = 2-1_; [ 'G(é‘)Q(e-i{u-a:W

where 1
Gle™) = —7——
==
and s
; wk
)y =2r% Sw—— for 0 < w < 2w,
Q) ét =)

(n) Taking the inverse Fourier transform of G(e#*) (see Table 5.2), we get g[n] = (1/4)"uln].

Therefore, a = }
(b) Taking the inverse Fourier transform of @(e’) (see Table 5.2), we get

1 twrzm 1 1
gln]l=1+ Etﬂ 12 4 iejrn + Ec,::-mﬂ_

This signal is periodic with a fund. | period of N = 4.
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5.20. (a) Sioce the LTI system is causal and stable, a single input-output pair is sufficient to
determine the frequency response of the system. In this case, the input is z[n] =
(4/5)"uln] and the output is yin] = n(d/5)"u[n). The frequency response is given by

Y (e™)

H{ev) = m

where X (¢*) and Y (e} ace the Fourier transforms of z|n] and y[n] respectively. Using
Tahle 5.2, we have

z[n] = (%)“u{n] & x(ev) =

AP
1= g:‘J‘“-
Using the differentiation in frequency property (Table 5.1, Property 5.3.8), we have
4\ FT dX(ev) _ (4/8)e” ™
st = (§)uind 5 Y(eM) =555 = g
Therefore, 1
(4/5)e”™
1= gemr

H(g“) =
() Since H{ejuw) = Y (V) /X (e¥), we may wrile
Y () [1 - %e‘j"’] = X(e*) [(4/5)e77].
Taking the inverse Fourier tranform of both sides
4 4
sln] - 3l — 1) = Jaln).
5.21. (&) The given signal is
ajn) = uln — 2] ~uln=6l=35n-21+ fn = 3] + &[n — 4] + d[n - 5).
Using the Fourier transform analysis eq. (5.9), we obtain

X(e) = S L e

{b) Using the Fourier transform analysis eq. (5.9), we obtain

-1
Xe¥) = 3 e

n=-00
= E(%r’“l"
n=1
el
2 (1-4ev)

(c) We can easily show that X (e™) is not conjugate symmetric. Therefore, z(n] is not real.
5.17. Using the duality property, we have

1
1) oy = 0, £ %(,. ) = 21

5.18. Knowing that
(I)M er_1-3 3
2 1 —cosw+ | S—dcosw’

we may use the Fourier transform analysis equation to write

3 . 1 Inl o
5—4mu_n§m(§) *

Putting w = —2xt in this equation, and replacing the variable n by the variable &
o0

1 U0 & iy
5 _dcos(onl) l:-L_jmi (E) .

By comparing this with the continuous-time Fourier peries synthesis equation, it s ims
mediately apparent that ax = }(i}m are the Fourier series coefficients of the signal
1/(5 = 4cos(2mt)).

5.19. (a) Taking the Fourier transform of both sides of the difference equation, we have
1 1
Y 1 — e — B = X (V).
() { gt 3 ] X(e™)

Therefore,

Lo Yie™) 1 - 1 s
Hejw) = X(@w) 1 feiw— et (1— e 3)(1+ Ty

(b) Using Partial fraction expansion,
. 3/5 2/5
H = —— 3
(ejw) = ;= Jem T+ iem

Using Table 5.2, and taking the inverse Fourler trasform, we obtain

hn] = g (%)nu[n] +: (—%)nu[n].
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(c) Using the Fourier transform analysis eq. (5.9), we obtain

-2
X@) = 3 G)rer

el l =

- "2(38"“)
e 1
01—

(d) Using the Fourier transform analysis eq. (5.9), we abtain

o
Z 2" sin{mnf4)e "

= =¥ 27 sin(xn/d)e""
n=0

12 — (12

n=0

X(e)

L
%

e
25 (1= (1/Deew  1-(1/2)e1 e
(e) Using the Fourier transform analysis eq. (5.9), we obtain
o0
X)) = 3 (/2" cosfn(n = 1)/8]e"

n=-00

1 /s i/
T [1 Tli/He e 1= (uz)s-mae-w]
pixl g R LA
T=/ge B T 1-(1 ;eye—:rfaew]

1
4
(f) The given signal is
z[n] = =36[n + 3] — 28[n + 2] — 8[n + 1] + &[n — 1] + 28[n — 2| + 3é[n - 3.
Using the Fourier transform analysis eq. (5.9), we obtain
X(£%) = =3¢V = 26 _ &V 4 g7 4 T 4 B
(g) The given signal is
2n] = sin(nn/2) + cos(n) = % T/ = eI 4 S 4 )
‘Therefore,
X(e) = ;-T[s(..a —n/2) = bl + /D) + Allw - D Sw+D)], 0S|l <
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(k) The given signal is
zn] = sin(Swn/3) + cos(Txn/3)
—sin({xn/3) + cos(mn/3)
- _%jlejmﬁ - e—j:m’i] + ;[ejm,f-] +e—;lm’!]_

]

Therefore,

X(e™) =- }{ﬂu —x/3) = d(w+x/3)] + x[8(w—=/3) +Ew+n/3), wOZ fw| < 7.
(i} z[n] is periodie with period 6. The Fourier series coefficients of z{n) are given by
§ 4o .
a = EEs[n]e"("""”"
=l

4
k= %ze—ﬂws}h

nal

1] 1= estmaid
B |1 = e tm/oik

Therefore, from the results of Section 5.2

o _ amiSwk/3 .
x(t’“): z o (%) [li:ﬁh—ﬂﬁ Hw - 2"6’:_2"!}-

==

(§) Using the Fourier transform analysis eq. (5.9) we obtain

L 4
(5) ﬁ’s—:‘,mw'

property of the Fourier transform,

1T PTT DR gy

Using the in freq

n(%)hliﬂa i 12sinw

(5 - 3cosw)?’

Therefore,

Inl I} i

1 1 FT 4 . l2sinw
N LI EREPR b MR A P - .

:["‘_“(3) (3) 5-3cosw (65— dcosw)?

G E Y PO

(k) We have
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(¢) This is the Fourier transform of a periodic sigual with fundamental frequency /2.
Therefore. its fundamental period is 4. Also, the Fourier series coefficients of this
signal are ¢ = (=1)%. Therefore, the signal is given by

3 ;
2[,“ o, z(_nt‘g‘k{-,fz]n o ejrnﬁ S L
k=0

(f) The given Fourier transform may be written as
X(e™) = c_"‘i(l J5)re=1m — (1/5) 3 (1/5) e "
n=0 n=0

= si(us)"e-w - u;a)f:u!s)"e"“"
n=0

n=1

Comparing each of the two terms in the right-hand side of the ahove equation with 'he
Fourier transform analysis eq. (5.9) we obtain

2 = (;-)"-lu[n— 13- (%)wulnl-

{g) The given Fourier transform may be written as

i 2/9 7/9
i — e———
X(e" )’1—;6"‘“’ 1+§¢-;w

z[n] = ; (%)" uln] + ; (— %)" ufn].

{h) The given Fouricr transform may be written as

Therefare,

G L T s OO ORI Wt
X(¢) =1+ 367" + 53¢ 4 e+ e g e

sform with the analysis eq. (5.8), we obtan

Comparing the given Fourier
1 1 1 1 1 B
z[n] = &[n] + sé[n =11+ 65[& -2+ E?é[n -3+ 3—]3[11 -4+ ﬁéin =5
5.23. (a) We have from eq. (5.9) ==
X(e) = E z[n] = 6.
n=—o0

(b) Nate that y[n) = =[n + 2] is an even signal. Therefore, Y (&) is real and even Tll'lw
implies that <Y (/) = 0. Furthermare, from the time shifting property of the Fourier
transform we have ¥ (e7) = &2 X(e™). Therefore, <X (&) = eI,
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5.22.

5.24.

Also,
23[n) = cos(Txn/2) = cos(xn/2) £5 Xa(e™) = w(blw - n/2) + 8w + 7/2}},
in the range 0 € |w| < . Therefore, if z[n] = z[n]zz[n], then
X(e?) = Periodic convolution of X;(e*) and Xa(e').

Using the mechanics of periodic convolution demosntrated in Example 5.15, we obtain
in the range 0 < jw| < =,

_In H<wl<
xei={y Dt V-
(a) Using the Fourier transform synthesis eq. (5.8), we obtain
] O ol 1 hﬂgi“’"dw
zjn| = — 4+
27 S angs 2 Jups

= L sin(@rn/4) - sin(en/4)]
(b) Comparing the given Fourier transform with the analysis eq. (5.8}, we obtain
z[n) = 6n] + 38[n — 1] + 28] — 2] — dd[n — 3] + &fn - 10].
(¢) Using the Fourier transform synthesis eq. (5.8), we obtain

al) = o= [ eRrrmdy

(_1)n+l
n-1)
3
(d) The given Fouricr transform is
X(e™) = cos®w + sin’(3w)
1+cos(2w) 1 — cos(d)
B A g
LOCTIN B THIN W T
1+ i + d" + 1=“ 4&

]

Comparing the given Fourier transform with the analysis eq. (5.8), we obtain

2{n] = o) + 16l = 2] + Foln +2] = 100~ 3] = J30n +3).

(c) We have from eq. (5.8)
2xz[0] = f.\’(e*"]d.r.
Therefore, .
f X(e™)dw = 4x.
(d) We have from eq. (5.9)

)

X =Y zn)-1y =2

(e) From Table 5.1, we have
Evlzin]} & Re(X (™).
Therefore, the desired signal is £u{z[n]} = (z[n]+z[-n])/2. This is as shown in Figure
55.23.

Evixn}

(f) (i) From Parseval’s theorem we have
fmix(ejw)l? =2 z |z[n)]? = 28x.

(1) Using the differentiation in {requency property of the Fourier transform we obtain

nz(n] R jd___XLa’;“'} "

Again using Parseval's theorem, we obtain

f_ F:f”iiwﬁ|2 =2r 3 Infflzln)® = 316x.

n=—00

(1) For Re{X{e™)} to be zero, the signal must be real and odd. Only signals (b} and (1)
are real and odd.

{2) For Im{X (&™)} to be zero, the signal must be real and even. Only signals (d) and (h)
are real and even.



(3) Assume V(&™) = ™ X(e?*). Using the time shifting property of the Fourer trans-
form we have y[n] = zin + a]. If Y (&™) is real, then y[n] is real and even {assuming
that z|n] is real). Therefore, z[n] has to be symmetric about . This is true only for
signals (a), (b), (d), (e}, (f), and {h).

:
(4) Since | X(#")dw = 2x=[0], the given condition is satisfied only if z[0] = 0. This is
true for signals (b), (e), (), (h), and (i).
(5) X(e) is always periodic with period 2x. Therefore, all signals satisfy this condition.
o0
(6) Since X(e°) = 3 zln), the given condition is satisfied only if the samples of the

signal add up to zero. This is true for signals (b), (g), and (i).

5.25. If the inverse Fourier transform of X (e/) is z[n], then
2] = Evfainl) = ZEEEEH AT, 400
and
zoln] = Od{z[n]} = M & jBw)
Therefore, the inverse Fourier transform of B(@} is —jzy[n]. Also, the inverse Fourier
transform of A(w)e? is z.[n +1]. Therefore, the time function carresponding to the inverse
Fourier transform of B(w) + A(w)e™ will be T [n + 1] = jzo[n]. This is as shown in the
Figure 55.25.
2 z
| 1 \
xeln) ] 1 W h I *xo[n]
T ! : o 1 ! I
l =
= -!' t 2 “la I ”‘
-2
alnan) = § wplnl= Desivad. :1'3,@1
Figure 55.25
5.26. (a) We may express Xa(e?) 28
Xale™) = Re{Xy(#)) + Re{Xa (") + Re (X (2447 )
Therelore,
za[n] = Ev{z[n]} [1 + Ay R
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—iv) (‘b vy E 7
A I o T m
Figure 86.27
(a) If z[n} = {-1)",
gln] = &[n] — &[n = 1].
(b) If z[n] = (1/2)"uln], g} has to be chosen such that
1, n=0
_13 n=1
gln] = 0, n>l
any value, otherwise
Therefore, there are many possible choices for gln].
5.29. (a) Let the output of the system be yin]. We koow that

Y(e) = X (&™) H ().
In this part of the problem

H{e) = m
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(b) We may express Xs(e™) as
Xs(e™) = Im{Xy (@)} + Im{ X ()}

Therefore, 3 ,
£3in] = Od{z;[nl} [ + ™) = 2(=1)"0d(xi{n]).

(¢) We may express o as

LA s s

- Xile™) o 1

(d) Using the fact that H(e/) is the frequency response of an ideal lowpass filter with
cutoff frequency /6, we may draw Xy(e?) as shown in Figure 55.26.

5 Ry} _ duniTete )}
| L
= o W " w B N
Figure 55.26

5.27. (a) W(e?™) will be the periodic convalution of X (/) with P(e?*). The Fourier transforms
are sketched in Figure 55.27.

(b) The Fourier transform of ¥(e?) of y[n] is Y (&) = P{e)H[e™). The LTI system
with unit sample response hn] is an ideal lowpass filter with cutofl frequency =/2.
Therefore, Y (/) for each choice of p{n] are as shown in Figure §5.27. Therefore. y[n]
in each case is:

i) ynj=0

(if) y[n] - nn%tn[!} oy I = LTS
{iih) yin] = =20/ _ %
(iv) yin) =2 [t

(v) vin) = } [2ip]

5.28. Lot e
2—"};){(?')6(:"”“’)&& 14 = YY),

Taking the inverse Fourier transform of the above equation, we obtain
gln)zln] = dn] + d[n — 1] = y[n}.

(i) We have
1
e
‘Therefore,

Y(e)

(=] =]

Taking the inverse Fourier transform, we obtain
yln] =3 (%)nu{n] -2 (%)H uln].

; 1
X&) = — :
= Ty

(ii) We have

Therefore,

i st
(1= fe=2) 1= ge~2v
- 4 2

T—Jer  T1-le (L= jerp

Taking the inverse Fourier transform, we obtain
y[n]-d(;)nuin] : n(i)"u[m —an+ :)(i)"up.;.

©0
X(eM)=2m Y Sw— (2k+ 7).

]

(i1i) We bave

Therefore,

oo
Y(e) = |23 J(H‘-{Ekd—l]n)] [I_IHITW]
e |

km—oo

= “T'kz $w = (2K + 1))

Taking the inverse Fourier transform, we obtain

:[n]=§(—1)“.
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(b) Given . e -
(L 11 msup2
hin] = 3 (ze" ) uln] + 3 (f uln),
we obtain R 3 1/2
ST e T 1 je e

(1) We have 1
X2
Therefore,
; 1/2 1/2 1
Y(et) = [l - eitfie & 1- ag'ifﬂe—ﬂ] [m

C

A AT
TSR e T 1-G/@e~ | 1= (/2
where A = =3/[2(1 — §)], B = 1/2, and C = 1/[2{1 + j)]. Therefore,
=5 N i ot Y e (R
vl = g5 (3) o1+ e (<5) w3 (3) o

(ii) In this case, \
oind = 23 o ] wi

(c) Here,
V() = X(S)H(EW) = ~3eH — ¥ 41 - 27T
+BeIv 4 PpmI 9Ny 4o=i™
3% 4 I - T 420
Therefore,

yin] = 36fn 4 5]+ &n + 4] — 8l + 3] - 38[n + 2]
+8[n + 1] + dfn] + 66[n — 1] — 28[n = 3] + 4 - 5.

5.30. (a) The freq Y resp of the system is as shown in Figure 55.30.
(b) The Fourier transform X (&) of z[n] is as shown in Figure 55.30.
(i} The frequency response H(&") is as shown in Figure §5.30. Thereforc, yn] =
sin(mn/8).
{ii) The frequency response H(&™) is as shown in Figure 85.30. Therefore, vin] =
9 sin(xn/8) — 2cos(xn/4).
(i) The frequency response H(e3¥) is as shown in Figure 85.30. Therefore, yln| =
1 sin(wn/8) - } cos(wn/4).
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in the range 0 < jw| < =. Therefore,
yin] = a0 + @™ +a_ e = %‘ +[(1/4) + (1/2)(1/ V)] cos(wn/4).

(i) The signal z{n] is periodic with period 8. The Fourier series coeflicients of the
signal are

7
o= %Z’lﬂic'm'mt"-
n=0
The Fourier transform of this signal is

o
X(e¥y= Y 2mapd(w — 2nk/8).

k==c0
The Fourier transform Y (e’) of the output is ¥ (/) = X (e?¥)H(e?*). Therefore,
¥ (%) = 27[a0d(w) + aydlw — 7/4) + 618w + 7/4)]
in the range 0 < jw| < =. Therefore,
yln) = o Fage™ pa_ e = %4- imsfvnﬂ)_
(iii) Again in this case, the Fourier transform X (™) of the signal z[n] is of the form
shown in part (i). Therefore,
Jin] = ao + @™ 4 a_ye I = % +[(1/4) = (1/2)(1/V2)] cas(an/4).
{iv) In this case, the output is
sinjm/3(n = 1)]  sinfx/3(n + 1)]

y[n) = hln} s z[n] =

w(n=1) #(n+ 1)
5.31. (a) From the given information, it is clear that when the input to the system is a complex
exponential of frequency wy, the output isa plex ex tial of the same [requency

but sealed by the |wy|. Therefore, the frequency response of the system is
HE)=|wl, for0gw|<n.
(b) Taking the inverse Fourier transform of the frequency response, we obtain

hin)

1 " 1 jrts
= f_ H(e)e

1 0 _ 1 -
= = —me"’"dw-l——f wet"dw
2h )y 2r Jo
= lf weos(wn)dw
wJo

_ 1 [cm(mr] - ]]
= _—

kg
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Figure 55.30

(iv) The frequency response H{e/) is as shown in Figure 85.30. "Therefore, yln] =
= sin{mwn/4).
(¢) The frequency response 5 (%) is as shown in Figure 55.30.
(i) The signal z|n] is periodic with peried 8. The Fourier series coefficients of the
signal are
7
_1 —3{wf8)km
o = E"Z::nz[n]e H(en/den

The Fourier transform of this signal is

X (&%) = i 2rapdw — 2xk/B).

k=-o0
The Fourier transform ¥ (/) of the output is ¥ () = X (&) H (™). Therefore,
V(&) = 2nlaghlw) + ard{w — x/4) + a_ 18w + 7/4)]
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5.32. From the synthesis equation (5.8) we have

[El; f_',H'('-‘"" }*-’] [zi, f_: H:(e’");ﬁv] = ha[0]h2(0].

Bafn) = hafn) €5 H\ (&) Hale™),

Also, since

5
35 | H&) Ha( ) = Pl ¢ halnl -
here to asking whether it is true that
m(0}ha(o] = [Aafr] » hafod)nno-
Since hy[n] and hz{n] are causal, this is indeed true.

Therefore, the q

5.33. (a) Taking the Fourier transform of the given difference equation we have

oy TAER 1
H = m—t = —————,
) X(e¥) 1+ jeiv
(b) The Fourier transform of the output will be ¥ (/) = X (™) H (™).
(i) In this case
1

)= e

i 1 1

Y(er) ‘= [l—ie"}“] [1 + ;e“i""]
1/2 1/2

1- e " 1+ Te

Therefore,

Taking the inverse Fourier transform, we obtain
1.7IR™ 1 5 §
yin] = 5 (5) ufn] + 3 (-E) uln].

el
14 fe—tv’

(ii) In this case

X(e) =
Therefore,
2
1
Y(e™) = —| .
&) [1—_;*'?:]
Taking the inverse Fourier transform, we obtain

vird =+ 1) (3) i)
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{iii) In this case
X(&™) =14 Lo,

2
Therefore, _
Y{e*)=1.
Taking the inverse Fourier transform, we obtain
yln] = &[n].
(iv) In this case
Xy =1- %e""".

Therefore,

Taking the inverse Fourier transform, we obtain
yin] = —8[n] + 2 (—%) ufn]
{c} (i) We have

Y(e™)

[l—-lc-"‘

1+ e"“’} [W;F_’:J

1+ }e-rv)z (14 fe-se)2

Taking the inverse Fourier transform, we obtain

yln]=(n+1) (——) uln] = in (_%)""‘ uln = 1].

(it} We have

o - [

1= lg—)“'

Taking the inverse Fourier transform, we obtain
1 "
yln] = (i) ufn].
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5.35. (a) Taking the Fourier transform of both sides of the given difference equation we obtain

Y({e™™) bae ™

H(e™) = X(o) =

lo order for |H (/)| to be one, we must ensure that
b+e ™ = |1 -ac™H|
146 +2cosw = 1+a®=2acosw
This is possible only if b = ~a,
(b) The plot is as shown Figure 55.35.
(e} The plot is as shown Figure §5.35.

Lnew) Ky

Vs

o 'A\_/w'h n[ LV ST TR
i-\/ (» )

% ! @)
Figure $5.35
(d) When s = —4,
Jar
H(eM) = i’ﬂg'—ﬂ-‘
Also, i
Therefore,
+e
Y™ = Grlema- e )
_ 5/ 3/4

1-fe-iv e fe-ww

Taking the inverse Fourier transform we obtain
5 (1\" 3 A"
viol = 3 (3) ol - § (3w
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(11} We have

i 1 1
Tut)e [(1+ $em1)(1 = }r:v}] [I B 5:—:-«}

BRLL LA )
(1+4em)? " 1 Jede " T Loaw
Taking the inverse Fourier transform, we obtain

vin] = 2(n +1) (--) ol + 2 (-%)“u[n}+ 3 G)“u[n},

() = [l+2¢"="‘]{ ‘__]

(iv) We have

1+ *e""
.
1+ 4.-_—1“ 1+ ég‘)u

Taking the inverse Fourier transform, we ohtain

] = (_%)“’-‘["i +2 (—%)M’U[u -3

5.34. (a) Since the two systems are ¢ ded, the fi

g Y resp of the overal] system is
H(e™) = H(e™)Hae)

L

1+ jems

Therefore, the Fourier transforms of the input and output of the overall system are
related by

=

V() 2t
X(er) " 14 jess
Cross-multiplying and taking the inverse Fourier transform, we get
vin] + guln ~3) = 2¢fn] - zfn — 1]
(b) We may rewrite the averall frequency response as

4/3 (1+3v3)/3 (1 - jv/3)/3
14 et " | - Jeiemzw - Te im0

H{e™) =

Taking the inverse Fourier transform we get
hln] = ; (—%) ufn] + —— : +J‘/- ( e’lm) ufn] + =3V Jvﬁ' (%c"'m)“ufn‘!.

3
194
This 15 as sketched in Figure $5.35.
5.36. (a) The frequency responses are related by the following expreasion:
G(e™) = !;'-(%JT)
(b} (i) Here, H(e™) =1~ le~7~ Therefore, G(e) = 1/(1 - e™) and gfn] = (§)"uln].
Sinece

i Y{e™) 1
o) = X T

the difference equation relating the input z{n] and output vin] is
y[n] - —I,rln =1} = z[n].
(ii) Here, H(e*) = 1/(1 + }e ). Therefore, G(e™) = 1 + 4¢3 and gn] = &[n) +
$6n — 1], Sinee
Yier) 1 .
X(om) 1+ 3¢ ¥
the difference equation relating the input x{n] and output yln] is

Gle™) =

in) = zln] + 32fn - 1)

(iii) Here, H(e™) = (1 = 1e"#)/(1 + fe=%). Therefore, G(e) = (1 + Le-3)/(1 —
}e=) and gin] = (})ufn] + 4(2)*ufn - 1. Since

() = Yie) 14 )e

X(e¥) 1 femse’
the difference equation relating the input z[n] and output yjn] is

oln) = gyin ~ 1} = =[] + Szl = 1)
(iv) Here, H(e™) = (1~ Je % — Le~2=)/(1 4 §e=i* — Le~¥~), Therefore, G(¢¥) =
(14 Fem2 = fem2v)f(1 — Lo i“b‘] Therefore,
2 2
BRI e = (/a)e7=

oln) = fn] +2 (%)‘u[n} —2 (—%)“u[n}.

» So-iv _ 1,2
Gle) — Y(ev) _(1+ fﬂ_w it N}.
X{e) (1= e — fe)
the difference equation relating the input z[n] and output yjn) is

1 1
uln] - 13’["‘ =1]- El"l"‘ =1 =zn]+ :—’z[n -1 - éz{n -2}
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(v) Here, H{e™) = (1= e ™)/(14 ™7~ }e~?). Therefore, G(e™) = (1+ 32—
ée"""};‘[l - ie"“] Since
Yieh) _ (1 +femiv ~ Ja2ie)

G(e¥) = o) = e %c—f")

the difference equation relating the input z[n] and output y[n] is
1 5 1
vin] = uln - 1) = z{n] + zz[n -1] = E:[n =2

(vi) Here, H(e'¥) = 1/(1+ $¢77 - }e~9%). Therefore, G(e/) = (1+ Semiv - L=ty
Since

Gle*) = %::}) =1 ge‘i‘“ - %e—%‘")

we have 5 1
gln} = én] + id‘[n -1 - EJ[H = |

and the difference equation relating the input z[n] and output yln] is
5 1
vin] = z[n] + Zz[n -1] - §=[n -2}

(¢) The frequency respouse of the given system s

e = Lem U
i 1+ 4 Je-2w’
The frequency response of the inverse system is
i 1 e 414 femivw
G = o = i fer

Therefore,
i (%)“Iu[n+ 1+ (%)nu[ﬂ] 3 (%)' MR

Clearly, g[n] is not a causal impulse response.

1f we delay this impul P by 1 sample, then it b causal. Furthermare,
the output of the inverse system will then be z{n — 1). The impulse response of this
cansal system is

ool =sin=11= () uinl+ (3) win -4 (1)l -2

z[n] £5 x ().

5.37. Given that
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Since zjn| is real, X(e™) = X*(e™). Therefore,
whl = g [ ReX(IHEm 4 e Mo+ £ [“Im(X (@) - e
= [ Retxe2emstony - - ["In{X (@)} sinturie
7o xJa
Thercfore,
Bw) = %Rcixte’“)}m(m). and - %Im[}((c’“)]sin(m).

5.38. Let yln] = z|n] « An]. Then

Y(ew) = ”ijmirinlvh!nl}e““
- niu.im:[k]h[n—k]ﬂ"“”‘
" ‘.imr[klnimh[n—k]e"""
B .i {kleMEH ()
= H(e““j*i [kje= 1wk

= H()X(e¥)

5.40. Lei y[n] = z[n] « hln]. Then using the convolution sum

viol= 3 x(ka[-k] (85.40-1)

k==oo

Using the convolution property of the Fourier transform,
o) = - [ Xt He ) (55.40-2)
-

Now let A[n] = z*[-n]. Then H(e™) = X*(&), Substituting in the right-hand sides of
equations (85.40-1) and (55.40-2) and equating them,

oo . 1 fe ) i
> ==k = o f_ X ()X ().

k=—-oc
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(i) Since
X(@) = 3 zfn]e=im,
n=-00

we may write

X*(e™ i) = z z*[ne~ e,

Comparing with the analysis eq. {5.9), we conclude that

z*[n] £ xe (e™).

Therefore, _ B
Re{z[n]} = z[n!-;: [n) g, X(e*) +2X fe=2))
{ii) Since
X(el) = E z(nje",
we may write
o
X(e™™) = Z z[—nje~im,
ne a0
Therefore,

z[-n] & X(e ),
From the previous part we know that
2] €5 X (7).

Therefore, putting these two st t her we get

z"[-n] 5 X+ ().

(iii) From our previous results we know that

Ev{z|n]} = z[n] :’[""I T, X(ev) ;X(e‘i'-')
5.38. From the synthesis equation (5.8) we obtain
sl = o [ X

L 1 gl
= E'j; X(e-"‘)e-"""‘d:.:+i;[)((e’)e T iy
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Therefore,
3 kel = 5 [ X,

n= -0
Now let Aln] = 2*[-n]. Then H(e?) = Z*(ev). Substituting in the right-hand sides of
equations (55.40-1) and (55.40-2) and equating them,

T =lhlbl = o [ X092 )

k=-o0

5.41. (a) The Fourier transform X (&) of the signal =[n] is

oo na+N-1 i
Xi{e) = Z z[nje 7" = z z[n]e=Im,
e na
Therefore,
netN=-1
X(eSHANy = Z lnje=IE/NAn, (S5.41-1)
nEng

Now, we may write the expression for the FS coefficients of z[n] as

1 1 natN-1
Gy = N zf{n]e"’ﬂﬂm“ = N Z :l:[n]c"(h'm’h.
<N LEL

(Beeause x[n] = Z{n] in the range ng < n < ng+ N = 1), Comparing the above equation
with eq. (S5.41=1), we get

s %x(e"“";.
(b) (i) From the given information,
X(e™) = l4e ™ qpe Dy o=
¢TI e g =KD} 4 =IO/ 2Dy o i11200)
= 2e7H2 {eas(3w/2) + cos(w/2))

(ii) From part (a),

ap = %X(e”"fﬂ) i #k"u‘u”“m{OW(GI‘&;‘[?N}:I + cos(mk/N)}.

5.42. (a) P(e’) = 2mb(w - wy) for |w| < x. This is as shown in Figure 55.42.
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-1 ] wo ﬁ_ :_Lﬂ

Figure 85.42
(b) From the multiplication property of the Foutier transform we have

G(e™) zi‘ j_ :x(a"}p(ew-“w

= %f X(e)2m5(wr — B — wo)d8
= X(edl-wely

5.43. (a) Usiog the frequency shift and linearity properties,

X(et=) 4 X (e
pierw) = XTI X,

(b) Let yln] = v[2n]. Then -
Y{e) = Y vf2nle™m

n=—o0

Since the odd-indexed samples of v[n] are zero, we may put m = 2n in the above

equation to get -
YieM) = 3 smle R = V().
m==o0
(Note that the substitution of n by 2m is valid only if the odd-indexed samples in the
summation are zero.)

(c) =[2n] is & new sequence- which consists of only the even indexed samples of z(n]. v[n] is
a sequence whose even-indexed ples are equal to z(n]. The odd- indexed samples of
u[n] are zero. v[2n] is a new sequence which consists of only the even indexed samples
of v[n]. This implies that v[2n] is a sequence which consists of only the even indexed
samples of z[n]. This idea is :J.luslrued in Figure 85.43.

From part (a),

i (w/2-7)y 4 X [adwi2
oty = KON X

5.44. (a) The signal z1[n) is as shown in Figure S5.44.
(i} Taking the inverse Fourier transform, the signal za[n] is

zg[n) = 21[n + 1)-
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(a) Comparing the equation for x1(t) with the above equation, we obtain
2y (1) = X (IGO0,
Therefore z(t) is as shown in Figure 35.45. .
(b) Comparing the equation for z3(t) with the equation for X (&™), we obtain
23(t) = X (P10 = 3, (-2).

Therefore z3(t) is as shown in Figure §5.45.
(c) We know that Od{z[n]} = (z[n] — z[-n])/2. Therefore,
: ¥ i _
X(e _ex{g ) _ 3 Odfatnl)e
nas-00
Comparing this with the given equation for z3(t), we obtain
x(rm-mt) = x{,ﬁ(ﬂfs}t)
7 A

z3(t) =

Therefore z3(t) is as shown in Figure 55.45.
(d) We know that Re{z[n]} = (z[n] + z*[n])/2. Therefore,

M’J.’z_“"kl’ﬂ = Z Re{z[n]}e™".
nE=-o0
Comparing this with the given equation for z4(t), we obtain

x(t—j(hﬁ]t) i X-[eiﬂf.fﬁl*)
7 [t} = 2 =

Therefore z4(t) is as shown in the Figure $5.45.

5.46. () Let 2l = a"ufn]. Then X(&™) = r=g=c- Using the differentiation in frequency

O 1
property. " or dX(eR) - . )
natuln] & j——— = ersoa
Therefore,
dX (9"" )

+X(£‘-‘")=—:‘Z_T,-.

(n+ Da"ufn) €5

(b) From part (a), it is clear that the result is true for r = 1 and r = 2. Lot us assume
that it is also true for k = r — 1. We will now a:templ. to prove that the result is true

for k = r. We have

1
3:,_1[11] = (:_+r_2)' n ‘n] l—! Xo- ;{e""') r—?;rm

2)!
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(it) Taking the inverse Fourier transform, the signal za[n] is
za[n] = :[n = 3/2] = sin(xn3) + sin(xn/2) cos(3n/4) — cos{mn/2) sin(37/4)

This is as shown in Figure 55.44.

(b) From part (a),
zz[n) = zy[n + 1) = w(nT + T).

Also,
r3[n] = 2,[n — 3/2] = winT - 3T/2).

Therefore, o = ~1 and 8 = 3/2.

5.45. From the Fourier transform analysis equation

X&) = i z[n]e~ "

n==oc
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From the differentiation in frequency property,

nzr_1[n] & alr=1)en ., ”.e-w 5

{1 _m-ﬂ}r-l
Therefore,
(n+)zraafn+1] rFr 1
afr = 1) (1 = ae=a=)"

The left hand side of the above expression is
(m+1l)zryn+l] (m+r-—1)
alr =1} T omlr =1}
Therefore, we have shown that the result is valid for r if it is valid for r — 1. Since,

we know that the result is valid for r = 2, we may conclude that it is valid for r = 3,
r =4, and 50 on.

a"uln] = z,[n].

5.47. (a) If X(e*) = X(e/“~"}) then X(e?) is periodic with a period of 1. But we already
know that X (e} is periodic with a period of 2n. This is only possible if X (e?¥) is a
constant for all w. This implies that z{n] is of the form ké[n] where & is a constant.
Therefore, the given is true.

(b) If X () = X(ew=7)) then X (™) is periodic with a period of #. We also know that
X(e™) is periodic with a period of 2x. Both these conditions can be satisfied even
if X(e™) has some arbitrary shape i m the region 0 < |w| < x/2. Therefore, X(e')
need not ily be a Juently, z{n] need not be just an impulse.
Therefore, the given statement is talne..




(¢) We know from Problem 5.43 that the inverse Fourier transform of X(e™/?) is the
sequence uln] = (z[n] + &™z|n))/2. The even-indexed samples of vin| arc wientical
to the even-indexed samples of z{n]. The odd-indexed samples of vfn] are zero. If
X{e’¥) = X(e™1?), then z[n] = vfn]. This implies that the indexed samples of
z|n] are zero. Consequently, rfn] does not necessarily have to be an impulse, Therefore,
the given statement is false.

(d) From Table 5.1 we know that the inverse Fourier transform of X(¢/®) is the time-
expanded signal

z[n/2], n=0,%2, x4, -
0, otherwise ?

i) = {
If X(e%) = X(22™), then z[n] = z(z)[n]. This is possible only if r{n] is an impulse.
Therefore, the given statement is true.

of both 3 and elimi

Y(e™) 3—Jei
X(e*) (1= 4e=)(1 = Lemv)

548, (a) Taking the Fourier tr W(e), we abtan

H(e™) =

Taking the inverse Fourier transform of the partial fraction expansion of thi above

expression, we obtain " N
hin] =4 (%) ufn] = (i) ufn].

Y{ew) 3—je
X(er) (1= fe)(1 = fem1v)
Cross-multiplying and taking the inverse Fourier transform, we ohtain

3 1 _ .
i) = $uln ~ 1]+ Fuln = 2} = 32ln] - 52ln — 1.

(b} We know that

H(e¥) =

5.49. (a) (i) Consider the signal z[n] = azi[n] + bxa[n], where @ and b are constants  Then,
X(e') = aX,(e™) + bX3(e™). Also let the responses of the system (o r:[nl and
z3[n] be yi[n] and ya[n], respectively. Substituting for X (¢’*) in the equation given
in the problem and simplifying we obtain ¥ (e/) = a¥; (&™) +bYa(e!™). Therefore,
the system is linear

(ii) Consider the signal 1[n] = z{n — 1). Then, X;(e/¥) = £ 2%X(e). Let the
response of the system to this signal be y[n). From the given equation,

Ve™) = 2X(¥) + e X () - @
= M [QX(H"] +e X)) - %&""}] 4 eI X ()
# Y (e¥)

Therefore, the system is not time invariant.

205

(b) From the given information,
. ¥Y(eM) _ (1= #c_"’}"‘
) = Xe™) ™ a0 = e

We now want to find X{e™) when ¥ (e?) = (1/2)e™ /(1 + ;r"’) Fram the ahove
equation we obtain

e~ #(1 = Lem)?
(1— Jer)2(1 4+ fer)’
Taking the inverse Fourier transform of the partial fraction expansion of the above
expression, we obtain

) : (—%)H ufi =1+ % (%)H | %n (-’2-)"-' =)

5 51. (a) Taking the Fourier transform of hn] we obtain

X(e™) =

. ; ~lemaw
'y ! =
H() = V()X () = T i e
Cross-multiplying and taking the inverse Fourier transform we obtain
3 1 3 1
yln] - E"{“ -1+ ay[ﬂ -2 = Er[n] - Ez[n -1

(b) (i) Let us name the intemediate output win| (See Figure 835.51).

ylnd

Figure 55.51

We may then write the following difference equations:

yin] + %yln -1 = %w[n] +win=1]
and . 1

i - Juln = 1] = o] - 3ain - 1]
Taking the Fourier transform of both these equations and eliminating Wi(ev), we

beai S " "

e V() fo et jerth
X(er) — 1= de-2w
Cross-multiplying and taking the inverse Fourier transform we obtain

H(e™) =

i)~ yin—2) = bl + taln=1) - geln -2
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(i} If z[n) = éfn), X(e™) = 1. Then,
Y(e™) =2+

Therefore, y[n] = 2én| + §ln - 1].
(b) We may write
- ..!._ +7 /4 B (=t}
Y(e™) = 2:],:.,‘ X(e°)H (&= )ag,

where H{e’) is as shown in the Figure $5.49.

™ weew
1
_mq ] "‘?q '7,5
Figure S5.49

Using the multiplication property of the Fourier transform and Table 5.2, we obtain

— sin(wn/4)
yin) = 2a{) 220D,
5.50. (a) (i) From the given information,
H{e™) = Yie™) _ 1= e

X(e™) ~ (1 = femi)(1 = fe=)

Taking the inverss Fourier transform, we obtain
13" 1\"
hin]=3 (I) ujnj -2 (5) uln].
(ii) From part (a), we know that

Y(e) _ 1-je
X(e) (1= Leaw)(1 = femrv)’

Cross-multiplying and taking the inverse Fourier transform

7 1 1
yin] — 1—2-y|n - 1]+ 1—2-y[n -2 =2n] - Ex[n -1

(u) From (i)

Y(e)  }+fer— i

X))~ 1-few

(iii} Taking the inverse Fourier transform of the partial [raction expansion of H(e?),

we obtain = i
i) = 280 - 3¢ (3) st + 5 (3) ")

5.52. (a) Since h[n] is causal, the nonzero sample values of A[n] and h[—n] overlap only at n = 0.

H(e") =

Therefore,
S e Anlf2, n>0
Evlhln]} = "‘I_I*‘zl‘:'l = { h{0), n=0 .
h[-n]/2, n<0
In other words,
28 v{h|n]}. n=0
hln} = { Evfhfd]},  n=0 (85 52-1)
a, n<l

Now note that if
Afn] &5 H(e™)
then

Ev{h[n]} =

Ml 8- +;‘[‘“] T, RegH(e)).

Clearly, we can recover £v{h[n]} from Re{H(¢2“)}. From Ev{h[n]} we can use eq.($5.52-
1) to recover hln]. Obviously, from hfn] we can once again obtain H(e™). Therefore,
the system is completely specified by Re{H (&™)}
(b) Taking the inverse Fourier transform of Re{H(e’~)}, we obtain
Ev{hln]} = 8fn] + g!!n ~9 4+ %6]ﬂ+2}.
Therefore,
hln] = d[n] + ad[n - 2),
ﬂ.“d x
H(d) =1+ ae™/™,
(c) Since h[n] is causal, the nonzero sample values of hln] and h{-n] overlap only at n = 0.

‘Therefore,

n=40 .
=h|=n)/2, n<0

SISO ), n>0
Od{hn]} = *‘{_IQM = { o,



In other words,

some value, n=0 (55.52-12)

204{h|n]}, n>0
hn)
0, n<0

Now note that if

hin] <5 H(e™)

Od{h{n]} = M FTy sTm{H().

Clearly, we can recover Od{h(n]} Erom Im{H(e™)}. From Od{h[n|} we can usc
€q.(55.52:2) to recaver hin] (provided k0] is given). Obviously, from h[n] we can vnee
again oblain H{e’”). Therefore, the system is completely specified by Im{H (<)}
and A[0].

(d) Let Im{H(e*)} = sinw. Then,

then

1 1
Od{z[n]} = Ed[n -1]- 55[" +1].
Therefare,
hin] = h[0)8{n] + &[n - 1)
We may choose two different values for A[0] (say 1 and 2) to obtain two different systems
whose frequncy responses have imaginary parts equal to sinw.

5.53. (a) The analysis equation of the Fourier transform is
. el
X(e) = Y alnje".
n= =00

Comparing with eq. (P5.53-2), we have
j" K = x(cj[hi-fﬂl)

(b) From the figures we obtain
Xy (e) =1 — e 4 2¢™ 4

and
Xa(&¥) = —6¥ — &% — 1 e e | ey gy 2¢ 07w,
Now, 3
X (ST = 1 = eI 9=k
and

xz(,,:l'hh“)) == e"""n + 2p=Nimk{2 X (e;['-‘xkfﬂ)l
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5.55. (a) (i) From Table 5.2, we have
o
X(e™)=2r Y 8w - 2xk).
k=00

(ii) When M =1, P(e™) = & 4 14 ¢™ = 1 + 208w
(iii) When M = 10, we may use Table 5.2 to find that

Hif s nin(:}:m_
(b) The plots aze as(:li:.?;m in Figure S5.55. PIAL)
e 3 Lt i) Helo

2w T ze
e : M
e - EA
#Hd~)
Hwl

Figure $5.55

(c) We have W(e™) = S=4eeelll, Tho plots are as shown in Figure 5.5
{d) The plots are as shown Figure 55.55.
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5.54. (a) From eq. (P5.541) it nchxthnwmmX[kiﬂormpanmhrm“o{k we
need to perform N complex multiplications. Therefore, in order to compute X&) for
N different values of k, we need to perform N.N = N? complex multiplications.
{b) (i) Since f[n] = z{2n}, we have f[0] = [0}, F(1) = =[2]. ---, FUN/2) - 1] = =[N - 2].
Since r[n] is nonzero only in the range 0 < n < N = 1, f[n] is nonzero only in the
range 0 € n < (N/2) - 1.
Similarly, since g[n] = z[2n + 1], we have g[0] = =[1], g[1] = =(3], -+, gllv/z) -
1] = z[N]. Since z[n] is nonzero only in the range 0 € n < N — 1, g|n] is nonzero
only in the range 0 < n < (N/2) = 1.
(ii) We may rewrite eq. (5.54-1) as

. 1 (N/2)=1 WA (wjz)-1
X= 2 W+ Wiy 2 zfen + W™
n=0

Since Wik = Wi, we may rewrite the above equation as

(Nj2)=1 V-1
XK o= & Z fWs, +Why Y oWk,
%F[“] + JWhGIK] v (85.54—1)
(iiil) We have
o (/-1 ol
Flk+ N2 = 5 z SN WL WS = Pl
Similarly,

Gk + N/2) = G[K).

(iv) Since F{k] is a N/2 pomt DFT, we may use an approach similar to the one in part
{a) to show that we need N2/4 pl Itplications to compute it. Similarly we
may show that the computation of Flk] N?/4 multiplications. From eq.

(55.54-1), it is clear that we need N?/2 + N complex multipleations Lo compute
X[k].

(¢) By decomposing g[n] and f[n] into their odd and even indexed samples, we can bnng
down the number of computations to N?/4 + N/2. Repeating this d
logz N times, we make the required computation Nlogy N. We tabulate helow the

computations required by the direct method and the FFT method for values of N
N irect method | FFT method

==
32 1024 160
256 65536 2048
1024 1048576 10240
4096 16777216 49152
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5.56. (a) We have

X{er, e} = ¥} ¥ zlm,pjedlamban)

n=—com=—o00

ol o
Z E z|m, n]c"‘"“'"" em

3 X(e n)em i

n=—co

Therefore, we may write
X(&™,n) = %;]_:x(e“-,am?”"m.
From this we obtain
afmon) = o j f X(, ) Mmoo,
(b) We may easily show that
X{e™,e8“7) = A(e)B(e?).

(c) We use the result of the previous part in many of the problems of this past.
(i) X(e™1, el1) = e~doighiva

(i) X(e,e27) = [ [F&J_n]

(iii)x(ew-,emu[m][ g B~ R~ 2wk b x 3 B+ % - m,]_

k==o0

(iv) Here z[n, m] = {u[m + 1) — u[m — 2]}{u[vx + 4] = ufn — 5]}. Therefore,
i sin(Tas/2)] [sin(3a /2)
Skt [Blﬂ(wzﬁ) ] [Siﬂtw:ﬂ)
(v) From the definition of the 2D Fourier transform we obtain

43w -7 g 14ws)
X(c’“‘l .e:""’) _ l:’["" Y [1=¢ J_[Ul-lh’z} gty 1 — 373 +_f )
—emdun | ] — gmilwius) 1 — e~ 710w )

(vi) From the definition of the 2D Fourier transform we obtain

X(e,e) = & 2 z [fwr = 22 + 2rl)blwn - § +277) -
J{EIT;' + 2ml)d(wy + § + 2ar)].
(d) (i) X(eXon—Wi),iten-Wa)y
(i) X(e¥, e¥)

(i) ‘—',f f'xw'(.,:-’}g(.ﬂw-«:).,:(w,-o:,d(da
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