- HAPLEr D Answers

6.1.

6.2,

The sigoal z(t) may be broken Up into a sum of the two complex exponentials :|(£_} =
(1/2)e7-%% angd z,(2) = (1/2)e~r0t-ds. Since complex exponentials are Eigen functions
of LTI systems, we know that when z,(¢t) passes through the LTI system, the output is
nie) = 2(OH () = 21 (4)| H ()| H 0w
o= (ugng(j%"eﬁwhﬂ‘tﬂﬂﬁmll
Similarly, when the mput is 25(t), the output is
v2(t) = (1/2)|H (= jup) e~ Hostt du=ah(=10m))
But since hln] is given to be resl, |H(jag)| = |H(~juy)| and <H(jun) = —<H(jun).
Therefore, f ]
valt) = (1/2)| H (o) je=senttao+ o)
Using lincarity we may argue that when the ioput to the LT] system is z(t) = z)(t) + xa(t),
the output will be y(¢) = wi(t) = ya(e). Therefore,

YO = 1H (jun)| cos(uet + o + <H jwn) = [H (i) cos (ote - 228en)y #)

(a) From y(¢), we have A = |H (Fuy)].
() From y(t), we have tg = ~<Hlwm)
The signal z[n] may be broken up into & sum of the two complex exponentials zy[n] =
(1/2f)etwon+éo g Zo[n] = (=1/25)e-I#n=4%_ Since complex exponentials are Eigen func-
tions of LTI systems, we know that when zy[n] passes through the LT] system, the output
15
nln = mifnjH(ew) = Ty [n][H (e300
= (/2518 (e0)|eluwns ot at(eioy)
Similarly, when the input is z5[n], the output is
valnl = (=1/25) | H (e |~ slunsou-atiiers-o))

But since (1) is given to be real, [H{e?®)] = |H(e=#%)| and GH (M%) = —qH(e1e),
Therefore, )
V![“f = {__I;2’-]|H(emn}r¢—:lwlvnfqme"ﬂn_

Using linearity we may argue that when the input to the LT[ System is z[n] = z,[n] + z;[n],

the output will be yfn] = wn| + wa[n]. Therefore,
z —qH (el
yln] = [H ()] sin(uwyn + do + <H (ef%)) = |H (%)} sin (wn[rl - __-w:__}" + «.ﬂn)
Now note that if we require that v[n] = |H(e™)|z[n - ng), theang = —qH(eJ'"j,'Iw has
to be an integer, Therefore, AH (6] = —nguy, Now also, note that if we add an mwg_er
multiple of 2x to this aH{e’%), it does not make any difference. Therefore, we require in
general that <H(e/™0) = —po(uy + 2kx).
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Taking the inverse Fourier transform, we have
M) = Ai(g)e™et 4 b, (g)e=TPoet
= 2hy(t) cos(Let)
Therefure, g(t) = cos(2uw,t),
(b) The impulse response hy(t) is as shown in Figure S6.5. As w, increases, it is clear

that the significant central Jobe of hy(¢) becomes more concentrated around the origin,
Consequeatly h(t) = 2k (t) co8(2uw,t) also becomes more eoncentrated about the origin.

The frequency response H{(e?) is as shown in Figure S6.6.
(a) Consider the signal h[n] = sinfwen)/(xn). Its Fourier transform H\(e?) is as shown
in the figure below.

i) Hle?)
ES
~M ey o Filie .t
hfa)
A1
P + ,{ 2
Figure S6.6 n=m (assuming 7 €I)
e b
Clearly,

H{e) = H)(ellv-m)),
Taking the inverse Fourier transform, we have
kln) = hy[n]e™ = A, [n](-1)n,
Therefore, g[n) = (-1)".
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6.3,

6.4,

6.5.

6.7

6.8.

(a) We have
) 11 = ju] _ VIt
S T ey =1,
Therefore, 4 = 1.
(b) We have

HGw) = tan™!(~u) ~ tan~!u) = 2tan"w).
Therefore, the group delay is

d s 2
Tw) = —E«wa} E o 12

Clearly, T(w) > 0 for w > 0. Therefore, statement 2 is true,

(a) The signal c06(#n/2) can be broken up into a sum of two complex exponentials =
(1/2)ed*n/2 gpg 2fn) = (1/2)e=3"/2 Rrom the given information, we ko that
21[n] prsses through the given LTI system, it eXperiences a delay of 2 samples
the system has a real impulse response, it has an even group delay function. Ther
the complex exponential T2[n] with frequency —wy also ExXperiences a group dela:
samples, The output vin] of the LTI system when the input is zln) = zy[n) + £,
therefore

Vin] = 221(n — ) 4 22205 — 9] = 900 (;_'(n -2)= Zcos(gn )

(b) The signal z[n] = sin(%n 4 %) is the same a5 _ sin(§n — %), This signal may

again be broken Up into compl P Is of freq ¥ 7/2 and —x/2. We
then use an argument similar to the one used in part (a) to argue that the gutput
is '

virl = 2z[n-2) = 24in (%ﬁ(n_ 2) + i’.)

2sin (72—_”" -Tn+ ;)

2sin (";_”n_ T+ ‘E)

25in (-?2:1'1 - i—')

The frequency response H(juw) is as shown in Figure $6.5.

(a) Consider the signal Ay (t) = sin(wet)/(xt). Its Fourier transform ), (ju) is as shown

Figure S6.5.

Clearly,

]

[

Hjw) = Hy(j{w - 2u,)) + B(Glw + 2u)).
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(b)Thiwpuhempmmfn]isuthminFmss.s. AS w, mncreases, it is clear
that the significant central lobe of 4, [n] becomes more concentrated around the origin.
Consequently hjn] = Raln)(=1)" also becomes more concentrated ahout the origin,

The frequency response magnitude |5 (jw)| is as shown in Figure $6.7. The frequency
response of the bandpass filter G(jw) will be given by

Glw) = FT{2A(t) cos(4000mt)

= H(j{w - 4000%)) + H(j(w + 4000=))
This is as shown in Figure 56.7
Hlgp)
—guaa LT | fwr aeue T ger s
&1'-)
TR —~osel - leey .'L-g- qooow [ T 2
Figure SB.‘?u-ﬂ_ baceg ‘tmr

(b) From the figure, it is obvious that the stopband edges are at 16005 radfsec and 6400~
rad/sec. This translates to B0 Hz and 3200 Hz, respectively,

Taking the Fourier transform of both sides of the first difference equation and simplifying,
we obtain the frequency respouse H(e)“) of the first filter

M
Zb.-e"J"“

joy = Yiel¥)
=4 JLY{;’_J)’_l “ﬂi M.
= 2 age
k=] '

Taking the Fourier transform of both sides of the second difference equation and simpli-
fying, we obtain the frequency response H;(e2) of the second filter.

M
(=1)*bye-sok
vios  ZlVhe

X(ewy = N :
e 1= 37 (—1)kayemsun

k=l

Hy(e?) =
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This may also be written as

M
zblg-ﬁu_rl.

Hye) = =% = H{e/m),

1= S oxe-Hle-mk
k=1

Therefore, the frequency response of the second filter is obtained by shifting the fre-
quency response of the first flter by =. Although the location of the passband chauges, the
tolerances will be the same in the second filter. The first filter bas its passhand helween
~wy and wp. Therefore, the second Glter will have its passband between 7 — wp antd 7+ wp.

6.9. Taking the Fourier transform of the given differential equation and simplifying, we abtain
the frequency response of the LTT system to be
Y(iw) _ 2
X(Gw) S+
Taking the inverse Fourier transform, we obtain the impulse response Lo be
hit) = 2~ u(t).
Using the result derived in Section 6.5.1, we have the step response of the system

H{jw) =

o) = A0+ u(t) = 01 = ~ul)
The final value of the step response is
2
s(o0) = 5

We also have 2
s(to) = 3[1 - &™),

Substituting s(ta) = (2/5)[1 - 1/¢?), in the above equation, we obtain tg = § se¢

6.10. We use Example 6.5 to guide us through this problem.
(a) We may rewrite H1{(jw) to be
1

Hijuw) = | = jw +0.1).

) = (55 0+ 0

We may then treat each of the two factors as individual first order systems and draw

their Bode magnitude plots. The final Bode magnitude plot will then be a sum of these

two Bade plots. This is shown in the Figure S6.10.
Mathematically, the ight-line approxi tion of the Bode magnitude plot is

=20, w<< 01
20 logyo |H(jw)| = 20 log;glw), 0.1 c<w<<40
32, w >> 40
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(b) We may ite the frequency resp Hyljw) as

: ;. 0.02

Haw) = (jw +30) (-{J?)F’ +0.2jw + l) :

Again using an approach similar to the one used in Example 6.5, we may draw the

Bode maguitude plot by treating the first and second order factors separately. This

gives us a Bode magnitude plot (using straight line) approximations as shown helow:
Mathematically, the ight-line approxi tion of the Bode magnitude plot iz

0. we<sl

2010y |H(jw)| = § —40logiw 1<<w<<i0 .
=20 logw — 34, w >> 50

6.12. Using the Bode magnitude plot specified in Figure P6.12(a), we may obtain an expressicn
for Hi(jw). The figure shows that Hj(ju) has the break frequencies wy = ' v 3
and wy = 40. The frequency response rises at 20 dB/decade after wy. At w,. toes i
canceled by a =20 dB/decade contribution. Finally, at wy, an additional —20 dbydecade
contribution results in the subsequent decay at the rate of —20 dB/decade. Therefore. we
may conclude that

. Alju + ) s
= —— e ——, 56.12-1)
HG9) = G s wnlow + o)
We now need to find A. Note that when w = 0, 20log,q |H1 (70)] = 2. Therefore, Hi(50) =
0.05. From eq. (56.12-1), we know that

Hy(j0) = A/320.

Therefore, A = 640. This gives us

6400w + 1)

BGe) = GoreGw + a0

Using a similar approach on Figure P6.12(b), we obtain

5 6.4
HG) = Govap

Since the overall system (with freq P H({jw)) is constructed by eascading
ystems with frequency resp Hy(jw) and H2(jw)

H(jw) = Hi(jw)Ha(jw)-

Using the previously obtained expressions for H(jw) and Hy(jw),

;s H{jw) 0.01{zw + 40)
Haljuw) = -H!U‘ul} = Gw+ 1w + 8)
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(b) Using a similar approach as in part (a), we obtain the Bode plot to be as shown in
Figure S6.10.
A tically, the straight-line

of the Bode magnitude plot s

20, we<02
20logyp |H(Gw)| = ¢ —20logg(w) + 6, 02 <<w << 50
—28, w>>50

6.11. (a) We may rewrite the given frequency response Hj(jw) as
250 250
H. = =
109) = FoT TR0 sw 25 G 0510w 4 50)

‘We may ﬂm_l use an approach similar to the one used in Example 6.5 and in Problem
6.10 to obtain the Bode magnitude plot (with straight line approximations) shown in

Figure S6.11.
20 g, Xy~ apleg,, betywl
20} A —arddldieacls s
' asf
o RG] Too wlmdfiee

t4

~ugo dbfducods

Figure 56.11 |

Mathematically, the straight-line approximation of the Bode magnitude plot is

20, w << 0.5
2Wlogye |H(jw)l = { —20logye(w) + 14, 05 <<w<<H .
—40loggfw) + 48, w>>50
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6.13. Usiagmapwdldmihrwthmmdmtbepmwiompmhhn.wobuin

o 320
HGe) = o Gw + 80)

(a) Let us assume that we desire to construct this system by caseading two systems with
frequency responses Hy(jw) and Ha(ju), respectively. We require that
H{jw) = Hy(jw)Ha(juw).

We see thal H) (jw) and Hz(jw) may be defined in different ways to obtain H(jw). For

instance 0
; ; 8
H - — RNy
1(w) Gor D) and  Ha(jw) GoT 80
and 32
" 10
H, = d  Hajw) = ——==
W) =gogg ™ B0 =T
are both valid combinations.
(b) Let us assume that we desire to construct this sy by ting two with

frequency responses H, (jw) and Ha(jw) in parallel. We require that
Hijw) = Hi(jw) + Haljw).
Using partial fraction expansion on H(jw), we obtain

o 1s0/39  160/39
Hw) = G205 ™ G+ 80)

From the above expression it is clear that we can define Hy(jw) and Hy(3w) in only
one way.
6.14. Using an approach similar to the one used in Problem 6.12, we have

50000(jw + 0.2)?

Hiw) = Go T 50)Gw # 10)°

The inverse to this system has a frequency response

1 0.2 x107*(jw + 50)(jw + 10)

Hilw) = H(Gw) (jw + 0.2)%

6.15. We will use the results from Section 6.5 in this problem.
(a) We may write the frequency response of the system described by the given differential
equation as
1

HO) = Gop s a4
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The final value of the step response will be b/(1 — a). The step response exhibits oscillatory
bebavior only if |a| < 1. Using this fact, we may easily show that the maximum overshoot
in the step response occurs when 1 = 0. Therefore, the maximum value of the step response

This may be rewrnitten as

'y 1/4
Hi) = Gora + 2560/ + 1
From this we obtain the damping ratio to be { = 1. Therefore, the system is critically
damped.

13

1——?-;[1 —-a)=b

Since we are given that the maximum, overshoot is 1.5 times the final value, we have

(b) We may write the freq P of the sy described by the given differential
equation as T 1_5..-.?.... =§ == a= _%_
) = o et s e
This may be rewritten as Also, since we are given that the final valve us 1,
ji s T —b =1 =% b= E
Halw) = o T 3@ + 1 = 3

From this we obtain the damping ratio to be { = 2/5. Therefore, the system is under-
damped.

(c) We may write the frequency response of the system described by the given differential
equation as

. 1
) = G e
This may be rewritten as

Aoy 1
Haljw) = CoF 720005 @) + 1

From Lhis we obtain the damping ratio to be ¢ = 10. Therefore, the system is over-

Therefore, the difference equation relating the input and output will be
1 3
uln] + 5yin — 1] = Zaln].

6.17. We will uge the results derived in Section 6.6.2 to solve this problem.
(a) Comparing the given difference equation with eq. (6.56), we obtain

r= ;', and cosé = =1,
Therefore, = n, and the system has an oscillatory step response.
(b) Comparing the given difference equation with eq. (6.56), we oblain

damped.
(d) We may write the frequency response of the syslem deseribed by the given differential - l and cos@ml.
equation as 2

a 7+ (1/3)jw
Hilpwy= 5(Gw)? + djw + 5
The terms in the numerator do not affect the ringing behavior of the impulse response
of this system. Therefore, we need to only consider the desominator in order to de-
termine if the system is critically damped, underdamped, or overdamped. We see that
this frequency response has the same denominator as the one obtained in part (b).
Therefore, this system is still underdamped.

Therefore, 8 = 0, and the system has a nonp-oscillatory step response.

6.18. Let us first find the differential equation governing the input and output of this circuit.
Current through resistor = Current through capacitor = C%ﬂ.
Voltage across resistor = RCIHE.
Total input voltage = Voltage across resistor + Valtage across capacitor
Therefore,

(1) = Rc‘i!ﬂ +ult).

6.16. The system of interest will have & difference equation of the form
uln] - ayln — 1] = bz[n]. The frequency response of this cireuit is therefore
Making slight modifications to the results obtained in Section 6.6.1, we determine the step H{jw) = 75'6_1"_1
response of this system to be L I,
b (l_:"_.) uln). Since this is a first order system, the step response has to be non oscillatory.
1-a
221 222
6.19. Let us first find the differential i ing the input and output of this circuit (d) Here, X(jw) = 1 : . :
st find the Al equation g i outF % . = 1/(2 + jw). From this we obtain z{t) = e~ 2u(t). Therefore, y(t) =
Current throug aad inductor = Current through capacitor = C2fg. ~2dr(t)/dt = de~Pu(t) — 25(2). ]
Voltage across resistor = RC2Y,
Voliage across inductor = LC‘F—EQ. 6.22. Note that L "
Total input voltage = Voltage across inductor + Voltage across resistor + Voltage across Hijw) = { W I Swsir
capacitor 0, otherwise
Therefore, (a) Since z(t) = cos(27t+6), X (jw) = 75 (w=2r) 4+~ x8{w+2x). This is zero outside
z(t) = Lcm + Bcfy.ﬂ +y(t). the region —3n < w < 3w, Thus, ¥ (jw) = H(jw)X (jw) = (3w/37)X (jw). This umplics
P & that y(t) = (1/3x)dz(t)/dt = (~2/3) sin(2xt + 8).
The frequency response of this circuit is therefore (b) Since z(t) = cos(dxt +8), X{jw) = e/*xd(w = 4n) + e™*xé(w + 47). Therefore, the
- 1 nonzero portions of X (jw) lie outside the range —3x < w < 37. This implies that
(jw) = ICGoR + RCjw+ 1’ ¥Y(jw) = X(jw)H (jw) = 0. Therefore, y(t) = 0.
We may rewrite this to be (c) The Fourier series coefficients of the signal z(t) are given by
. 1 et | —fhamt
H{jw) = — : == z(t)e ;
(757" + 2AR/2VC/ Ly et ToJemys
where Tp = 1 and wp = 2x/Tp = 2x. Also,
Therefore, the damping constant { = (R/2)y/C/L. In order for the step responss ta have
no oseillations, we must have { > 1. Therefore, we require Xt} = 25 i ——
R22/Z dneso
The only impulses of X (jw) which lie in the region =37 < w < 37 are at w = 0, 2w,
. y . . ’ - d 2r. Defining the signal zy,(t) = ag + ;7™ + a_j1e™7?™, we note that y(t) =
6.20. Lot us eall the given impulse response h[n]. It is easily observed that the signal hyfn] = i g iplt] = ag +ay 1 ¥ hat y(t)
Kfn +2) is real and even. Therefore, (using properties of the Fourier transform) we know (1/3r)dzip(t)/dt. We can also easily show that ag = 1/m, ay = a2, = —1/(4;).
that the Fourier transform H;{e?) of hy[n] is real and even. Therefore Hy(e™) b mro Putting these into the expression for z,,(f) we obtain zp(t) = (1/x) + (1/2) sin(2xt).
phase. We also know that the Fourier transform H(e™) = Hy(e™)e™. Since H. ("1 Finally, y(t) = (1/3w)dzp(t)/dt = (1/3) cos(2xt).
zero phase, we have S P, 6.23. (a) From the given information, we have
Therefore, th delay is R 1 lw| < we
erefore, the group y , Haljw) { 0 W
Tw) = Al =2 Using Table 4.2, we get
Aalt) = sinfw.t)
6.21. Note that in all parts of this problem Y{(jw) = H(jw)X(jw) = ~2jwX (jw). Therefore, PR
y(t) = ~2dz(t)/dt. ) (b) Here,
(a) Here, () = . Therefore, y(!]l: —Zd:(l)}qc = —2ja:~". Thls |_)a.tt could also hmr.e Hyliw) = Ha(ju)eT.
been solved by noting that P P tials are Eigen of LTI systems.
Then, when z(t) = e, y(t) should be y(t) = H(j1)e* = =2j¢’". Using Table 4.1, we get -
(b) Here, 2(t) = sin(wy)u(t). Then, dz(t)/dt = wy cosfwot)u(t)+sin(wpt)d(t) = wa cosluwnt)u(t). a{t) = ha(t + T).
Therefore, y(t) = —2dz(t)/dt = —Zwo cos(wot)u(t). Therefore,
(€) Here, ¥ (jw) = X(jw)H(jw) = ~2/(6 + jw). Taking the inverse Fourier transform we Bylt) = B0l + T}
obtain y(t) = —2e~%u(t). n(t+T)
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(¢) Let us ider a freq Hp(jw) given by
Hyljw) = { ;r x} S/t
Clearly, "
H(jw) = E;IHoLiw} o W{jw)),
where

W (jw) = j2ré(w — we/2) — j2mélw + wef2).
Therefore, from Table 4.1

helt) = hofthult) = [ﬂ“‘:‘:ﬁ] [~2sinfwet/2)].

6.24. 1M r{w) = ky, where k is a constant, then
4H(jw) = —kyw + k2 (56.24-1)
where &2 is another copstant.
(a) Note that if h(2) is real, the phase of the Fourer transform <H{jw) has to be an odd

function. Therefore, the value of ky in eq. {86.24-1) will be zero.
Also, let us define Ho{jw) = |H (jw)|- Then,

hott) = sin(mﬂﬂ!'

wt
(i) Here ki = 6. Hence, < H(jw) = —5w. Then,
H{jw) = |H{w)le U4 = Ho(juw)e ™
Therefore,
_ sin[200w(t — 5)]
M) = holt=5) = —r g
(it} Here ky = 5/2. Henee, <H(jw) = =(5/2)w. Then,
H(jw) = |H()|@ ) = HoGw)e .
Therefore,
i _ sin{200s(¢ - 5/2)
A1) = ho(t - 8/2) = e
(iii) Here ky = —5/2. Hence, aH(jw) = (5/2)w. Then,
H(jw) = [HGw)le H0) = Hy(ju)e ®/.

Therefore, in[200(t + 5/2)]
3 = ’_—.——
h(t) = ho(t+5/2) = = g
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i LI R
Vo aure 86.26°F
Pram Table 4.2, we have i)
sinfu,t
holt) = —>—-
‘Therefore, i)
sinfuw,t
h(t) = 8(t) - —?‘—

(b) A sketch of lig(2) is Figure 56.26. Clearly, as w. increases, h(t) becomes more concens
trated about the origin.

(¢) Note that the step response is given by
s(t) = h{t) = u(t) = u(t) - ult) » holt).

Also, note that hp(t) is the impulse response of an ideal lowpass filter. If so(t) =
u(t) » ho(t) denotes the step response of the lowpass filter, we know from Figure 6.14
that sp(0) = 0 and sy = 1. Therefore,

3(0+) = u(0+) — 5o(0+) = 1 = (1/2) = 1/2

and
s{oo) = u(ow) = soloe) = 0.

6.27. (a) Taking the Fourier transform of both sides of the given differential equation, we obtain

Y(w) 1

The Bode plot is as shown in Figure 56.27.
(b) From the expression for H(jw) we obtain
aH(jw) = = tan~ w/2).
Therefore,

] 2
)= -0 @

27

[b)lf.‘\(!}ismtnpuﬁdtubeml.thﬁdﬁw)dmmthmwbl:anaﬁdlunction.
Therefore, the value of k; in eq. ($6.24-1) does not have to be zero. Given only |H (jw)|
and 7(w), k2 cannot be determined uniquely. Therefore, h(t) cannot be determined
uniguely.

6.25. (a) We may write Ha(jw) as

s (1 — jw) _l=jw
i il TP T v
Therefore,
aH,(jw) = tan™[—w].
and

_daHa(iw) _ 1
s 14w’
Since 7,{0) = 1 # 2 = 74(1), 7a(w) is not a constant for all u. Therefore, the frequency
response has nonlinear phase.
(b) In this case, Hy(jw) is the frequency response of a system which isa cascade combination
of two systems, each of which has a {requency response H,(jw). Therefore,

Talw) =

aHyljw) = <H(jw) + <Ha{7w)

-l daHa(jw) 2
wugtdieGa) 2
b ol e s e

Since T(0) = 2 # 4 = 7(1), my{w) is not a constant for all w. Therefore, the frequency
response has nonlinear phase.

(c) lu this case, H.(jw) is again the frequency response of a system which is a caseade
combination of two sy . The first system has a frequency response Ha(jw), while
the second system has a fr Y Hy(jw) = 1/(2 + jw). Therefore.

aHy{jw) = <H,(jw) + aHs(sw)

el d<H,(jw)  d<tHp(jw) 2
o GdHaGw) ddHo(w) 1 2
7ele) dw ¥R vy S ey S
Since 7(0) = (3/2) # (3/5) = 7(1), 7{w) is not a constant for all w. Therefore, the
freq ¥ Tesp has Li phase.

6.26. (a) Note that H(jw) = 1 = Ho(jw), where Hy(jw) is

2 1, 0<ul<
H"(}“)'{ 0, oths[::!is_ewc !

Therefore,
h(t) = 8(2) — ho(t).
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Figure $6.27

(e) Since 2(t) = e tu(t),
X(jw) =

145w’
Therefore,
1
(14 5w)(2 + 3w)
(d) Taking the inverse Fourier transform of the partial fraction expansion of ¥ {jw), we
obtain

Y{jw) = X(jw)H(jw) =

y(t) = e™*u(t) — e ult).
(e) (1) Here,

; 1+ juw
b d =
Gw) = g3 jep
Taking the inverse Fourier transform of the partial fraction expansion of ¥ (juw), we
obtain
ylt) = e Mu(t) — te~Hu(t).
(i) Here,
¥ 1
YO ey

Taking the inverse Fourier transform of ¥ (jw), we obtain
ylt) = e~ tul).
(iii) Here,
o 1
Y0 = mime et

Taking the inverse Fourier transform of the partial fraction expansion of ¥ (jw), we
obtain

O = ) + 3¢ () = ()

6.28. (a) The Bode plots are as shown below
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(b) We may write the frequency response of (iv) as

A V1 (s
Hyw) = 12 -

Therefore, T
1
— =t e
ht) = 0t u(t) 106(:}
sad 11 1
s(t) = h(t) wu(t) = E“ = e Juft) - Eu[r).
Both k() and s(t) are as shown in Figure $6.28.
We may write the frequency response of (vi) as

_ 9/10 1
el void
Therefore, i .
= =, 2Lt
h(t) = 0° u(t) + 105(!]
and

() = Al0) ) = (1 = e alt) + ue).
l?:{}ll: h{t) and s(t) are as shown in Figure 56.28,
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-29. (a) (i) The Bode plot is as shown in Figure 86.29. Clearly, the system has phase lag. Tt

also has no lification at any freq ies (i.e., |H(jw| never exceeds 0 dB)
{u1) The Bode plot is as shown in Figure $6.29. Cleasly, the system has phaw lead, It
has amplification at approxi ly fr ies which exceed 0.1 rad /sec

(b) (i) The Bode plot is as shown in Figure 56.29. Clearly, the system has phase lag. It
also has no amplification at any frequencies (i¢., |H(jw| never exceeds 0 dB).
(1) The Bade plot is as shown in Figure $6.29. Clearly, the system has phase lag. It
has some amplification at freq ies near 0.1 rad/sec.
(iii) The Bode plot is as shown in Figure §6.29. Clearly, the system has both phase lag
and phase lead, [t also has amplification for a band of frequencies,

30. We know that

FT LW
102(101) ¢ X (532
Therefore, the Bode plot shifts by 1 decade to the left. The shape remains unaltored
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6.31. (a) The Bode plot is as shown in Figure 56.31.

(b) Since
?Ei‘_:' GE. JwX (jw),
the frequency of a differenti

T 8 H{jw) = jw. Therefore, its Bode plot is as
shown in the figure below,

(c) (i) The Bode plot is as shown in Figure 56.31.
(ii) Here, w, = 10 and ¢ = 4. The Bode plot is as shown in Figure 36.31.

6.32. (a) One passible choice for the compensator frequency response is

. 50035 +1)
H.(jw) = 2%t
Gw) (% + 12
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Therefore, the overall frequency response is

; 1
Hjw) = m&?

The Bode plot for this frequency response is as shown in Figure 56.32.
(b} One possible choice for the compensatar frequency response is
505w(is + 1)
(L5 + (g + Didhs + 1

Therefore, the overall frequency response is

Heljw) =

HOW) = @ + D + V)

The Bode plot for this frequency response is as shown in Figure 56.32.

£.33. (a) From Figure P6.33, we may write

6.36.

Y (jw) = X(jw) — Hiw)H(jw) = Haliw)X(w):
Therefore,
Hepljw) = 1 = H{jw) (56.33-1)

If H(yw) corresponds to an ideal lowpass filter with cutoff frequency wip. then Hay(jw)
is as shown in Figure 56.33.
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Figure 56.34

(d) From the tolerances derived in the previous part, it is clear that H,,(jw) is not neces-
sanly highpass.

Since z[n| = cos(won + 8), we have
X(e™) == i (€06 (w = wp = 2x1) + € 708(w + wo = 270)].
l=—an
Let ) be the principal value of wy in [==,#]. Thea
Y{e™) = X (@) H(e¥) == f [l — g — 2ut) = e ¥ jupdlw + wo — 2l)].
]

It follows that
y[n] = —wh sin(won + 6).

If -7 Swp = W, then
yin] = —wpsin(uyn + 8).

Let Ky} = |H{¢™)|. Then from Table 5.2 we know that

hyin] = M.

nn

If 7(w) = — gL «H(e™) = k (where k is a constant), then aH{e™) = =kw + k;, where
ky is a constant. If &[n] is real, then <H(e™) is an odd function, and therefore we may
conclude that ky = 0, Therefore,

H(&Y) = |H() ) = Hy()e
Taking the inverse Fourier transform we obtain

sinf(n — k)/2)

hin) = ha[n— k] = e
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6.34.

6.37.

Figure 86.33

Clearly, Ho(jw) corresponds to an ideal highpass filter with cutoff frequency wip.
Also,

hoult) = 8(8) = h(t) = 8(¢) — ”L(:‘!?ﬂ

This is as shown in Figure 56.33.

(b) If H(jw) corresponds to an ideal highpass filter with cutoff frequency wap, then from
eq.(56.33-1) it is clear that Hou(jw) is as shown in Figure 56.33. Clearly, Hy(jw)
corresponds to an ideal lowpass filter with cutoff frequency wyp.

(€) If we replace H(jw) with a discrete-time lowpass filter with frequency response H(e¥)
as shown in Figure $6.33, then the overall frequency response still is

Hey(e) = 1 = H{e™).
Therefore, H{e!) is as shown in Figure §6.33. Clearly, it is highpass.
(a) From the previous problem,
Houljw) =1 - H(jw).

This is sketched in Figure 86.34. Clearly, it is approximately highpass.
(b) We have H{jw) = Hy(jw)e?™), Therefore, |H(jw)| = |Hi(jw)l. Therelore, it is still
lowpass,

(c) We have
Houliw) = 1 — H(jw) = 1 — Hy(jw)e™™.
Therefore,
[Hou(Gu)] = |1 = Hy(gu)e’ ™).
We also have

1= |Hy(ju)] < |1 — Hy Gu)e?®™)| < 1 4 |Fh(Gwll
Therefore, Hoy(jw) is between the two curves sketched in Figure 36.34.
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(a) If 7(w) = 5. then from the above result,

sin[x{n — 5)/2|
hln] = -—-—-—-—1(“ =5
(b) If 7{w) = 5/2, then from the result derived at the beginning of this problem

sin[x{n — 5/2)/2|

hin) = = —=5/2)

(e) If 7{w) = —5/2, then from the result derived at the beginning of this problem

A} s sinir(n + 5{2],’2]_

=(n +5/2)
The results of all the parts of this problem are sketched in Figure 56.36
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Figure 56.36
(a) We have
. _il—‘e""!_
(N = F gl =1
(b) We bave

qaH(e™) = afe ™)+ [1 = 15"""'] =i [1 & %e""]

2

Yoo
o = 3 sinfuw)
= —w=2tan [——-—-—l = % (w}}

= qe™™]+4 [l - loos(w] - %sin(w:l] - [l - %ws(u} + %siu{w]l
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(¢} Using the result of the previous part, we can show with some algebraic manipulation
that
_ _daH(v)  }
)= dw ~ ‘S —cosw
This is as sketched below
(d) Let z[n] = cos(xn/3). We may write this as x[n| e""‘”,—’? + z"'”"’“z‘? From the

result of part (¢), we know that the delay suffered by a comy P ! of freg ¥
nf3is
- costx/3)

0

Similarly, we know that the delay 1 by a P ial of freq y —=/3
is also 1. Therefore, the output of the system is y|n] = ¥ NNy gmavin=1)3 2 =
cos(w(n = 1)/3).

6.38. We may express H(e™) as
H(O%) = 5= [Hi(e) o (206w — =/2) + 26 + 7/D}]

and : ol <
- v wy
H;[H“}_{ 0, we < jw] <7

Using the properties of the Fourier transform, we obtain
h[n] = hy[n] [2cos(mn/2)],

where .
ko) sinfw,.n)
1n ===

(a) When w, = =/5, hln] = 220/ pog(xn/2). This is as shown in Figure $6.38.

(b) When we = = /4, hln] = 282508 cog(xr/2). This is as shown in Figure 56.38

(¢) When w, = /3, hln) = 222203 cos(xn/2). This is as shown in Figure 56.36.
As w, increases, h[n] becomes more concentrated about the origin.

6.39. The plots are as shown in Figure S6.39.
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6.40. \We may write A[n] as
o
Hi(e*) = 5 kyfnjen
Az=c0
o0
= E hy[2n)e%m
n==o0
= z hin)e=on
ne—go
= H{d™)
Therefore, f{(c"") is H(e’™) compressed by a factor of two. This is as shown in Figure
56.40. (&)
. {——] I r—.
- le s )
i)
L1 17 [
car g ~v Sy b w ko @
Figure $6.40

Therefore, H\{e?) corresponds to a band-stop Glter.
41. (a) Taking the Fourier transform of both sides of the given difference equation, we obtain

¥(e™) 1= e

H{e™) = =
&)= ¥im) ~ T- Fem e o

Taking the inverse Fourier transform of H(e’) we obtain
hln} = (%) cos(xn/d)uln] - (2v/3 - 1) G)'sinf,m;-a)s[n].

(b) The log-magnitude and phase of the frequency response are as shown in Figure S6.41.

6.42. (a) We get
Sff_i—cos w
1776 + (1/2) cos e

()] = |Ha ()] =



l.ng'ﬂlﬁ“‘)l
° ﬂ(&i“'l
v L%
. i P |
-0 frut 0 = l/l = — w
Figure 56.41

and
(1/2)sinw
1+ (1/2) cos(w)

Comparing tangents of these angle in the range ( <w < 7, We get
GHa(e™) > <Hy ().

hyln] = (—%)“ uln] + .;. (—%)MI ufn - 1]

L o1\® T
hain) = 3 (_E) uln] + (-I) uln - 1.
This is as sketched in Figure 56.42,

R LA

<Hy(e) = tan™} ( ) and  <Ha(e) = tan~! (l——

(b) We get

and

I
Y
] I LR ho ()
=] ¢ "
e
; “*1[ i e
- S 0
gy
Figure 56.42
(e) We get !
oy _ 1247 .
e = (P ) e
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(b) Since
y[n] = a[nle’™™
and
A™) = X (L) Hip(e),
we obtain

Y(e™) = Hyple™ )X ().

Therefore, the frequency response of the overall system is H|.le"“"}}, I Hiled™) is

lowpass, then Hip(e?(~™) is highpass.

All three first order factors in this frequency response are of the form .

response. Therefore, the step response of the overall system is non oscillatory.

\
il

a >
0. Therefore, none of these factors contributes an gscillatory component to the step

Therefore,
1/2+ e
T+ (1;2):--&)

(5/4) +oonw
(5/4) + cosw

6.43. (a) If hpyln] = {~1)"hpp[n] = &7 hyp[n], then
Hpg(e™) = Hyp (7“7 ™).
Therefore, Hyp(e™) is as shown in Figure $6.43. Clearly, it corresponds to a highpass

filter.

—u

Gle™) = (
and

1G(e™)] =

Hple)

/_

m

(%]
Figure 56.43

(b) Now let us define h(n] = (=1)"hyp[n], where hpg[n] is the impulse response of a highpass
filter. Then
H{e™) = Hyp (=),
Therefore, if Hap(e?™) is s shown in Figure 86.43, then H(e/*) is lowpass.
6.44. (n) Note that (—1)" = &/, From the figure we have
yln] = (z[n)e™ + bipln]) €7

We may write this as
vin] = a[n]e’™,
where aln] = (z[n]e’*" o hyy[n]). Taking the Fourier transform of a[n], we obtain
A() = X(&@“ ) Hy(e).
Suppose that the input to the system is now z[n — ng). Let the corresponding output
be yi[n]. Then we may write
win] = b{n)e™™",
where b[n] = (z[n — ngle”™ * hpn]). Taking the Fourier transform of bin], we abtain
B(&¥) = X (e " Hy(e?)e ™ = A(¢¥)e T

Therefore,
bjn] = a[n = no).
Consequently, y1[n] = y[n = no). Therefore, the system in time invanant.
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{b) One such example i h[n] = d{n} + 28fn = 1] + 38[n — 2] + 24ln — 3] + &ln - 4].
(e} We have

ol
H{e™) 3 hfnje

"= —on

B0} + Aftle™ 4 - + ATy — Lems(F1) 4 h[%]e'l“"f’
4ooe sk R[N = 1)eeN L

Since h[q- +n]= h[g —n — 1], we may writc

H(eW) = e AN=072 [pjgleieiN-0/2 4 pfr)es*F D

(i8) The factor ;715 contributes anoscilhuont P t to the step resp There- . *”'IE R +h[£ e
fure, the step response of the overall system is oscillatery. 2 2
(ii1) Consider the second order factor For this, weget r = $and e 4 = 4 4o R[1)em 0BT =) | ppfeaed £ J]

1
T dem= ﬁ:ﬁ— e
Since # # 0, this second order factor contributes an oscillatory component to the step

response. Therefore, the step response of the averall system is oscillatory.

6 46. (a) We have

H(e¢™)

o0
3 hfne "
n=-00

A0 + Bl + - + B

; Lie st =172 4 g pIN — 1]

Since h[&7 + n] = {25 — n, we may write

H{gy, = g =NE [h[n]e'*‘”-im +h(1)e Y hiN—;-l]
oo 4 A[Lem ISR hloje-wl%“‘b]
= RN [ghfcos(u(N - 1)/2) + peosfu 2 - 1)
——
1N =112 )
where

Alw) = [%[U]m(m[N - 1)/2) +2h{1]w[u(£;—l —1)] 4 -+ A N—z:--h]
is a real-valued function.
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-1)

= gl [ﬂh[l]]oos(w(f"’ —1)/2) 4 2h[l]uos[ul¥ - 1)}
g +zh[1:— = llm(wﬂ]]
L LT ()
where

Alw) = |2h]0) cos(w(N = 1)/2) + 24{1] cos[w{N a

N
— 1))+ 2H 5 = Hcos(w/2)
is a real-valued function.
(d) One such example is A[n] = é[n] + 2é[n = 1] + 28[n - 2] + 8ln - 3}
6.47. (a) Taking the Fourier transform of both sides of the given diflerence equation, we have

¥ (e
X(e=)

H(e™) = = b1 + 2acosw].
(b) We want H(e'®) = b) + 2a] = 1. Therefore, b = 1/(1 + 2a).
(c) gﬁﬂ‘: 1/2, then b = 1/2. Therefore, H(e?*) = j[1 + cosw]. This is plotted in Figure

6.48. (a) Here, ) )
H{e¥) = bie™™ + by~ = 2bye~ ™2 cos(w/2).

Therefore, :
|H{e®)] = 2]by|] cosiw/2)].
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T Figure $6.48 7 “
b) Here, ’
5 aa H(e™) = by + bye " = 2bpe ™%/ cos(3u/2).
Therefore,
|H{e™)] = 2bo|| cos{3w/2)|
(c) Here,
H() = by + e~ + bye™?™ 4 bye ™% = 2bye ™37 coslw) ooriun/2)
Therefore,
[H ()] = 2]bo|l cos(w)]] cos(w/2)].
(d) Here,
H(e™) = by + bre 7 + bye ™72 4 bye™ ™ = —2bye 7512 sin(w) sinw/2).
Therefore,

1H(e™)] = 2|by|| sinfw)| sin(w/2)].
The plots for the frequency response magnitudes are shown in Figure 56.48

6.49. (a) Taking the Fourier transform of both sides of the given differential equation. we obtain

h 9
v = o e+ 10
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(d) The approxi i P may be exp i as

7 : o g 1 1
AiGw) = i) - Balio) = 1555 ~ 1o

The differential equation relating the iuput and output of the approximate system i

a0, . 1d) 8
T+ (‘)—E i +1=(‘)-

The magnitude of the freq P of the exact and approximate systems are
plotted in Figure 56.49. Clearly, they are identical for low &aqugncie.-s- The step re-
sponses of the exact and approximate systems are also plotted in Figure S6.4%, Clearly,

they are identical for ¢ approximately greater than L.

6.50. (a) We have
¥ (jw) = X Gw)H (jw) = [S(Gw) + W (jw)] H(jw)

Therefore,
elw) = IS(gw) = Y Gw)? = [SGw) - [SGw) + W ()] H )l
(b) From part (a), we obtain
dw) = [SEWIE + HAGw)IS(w) + W) - 2Re(S"Gw) [SGw) + W) H (jw)
= 18Gw)I? + HY(w)|SGw) + W Gw)? = 2HGw) (ISG) + RelS" Gu)W (iw))]
Therelore,

W) g )|SGw) + W) — 2 [ISGw)? + Re{S* ()W Liw)}]
AH (jw)

If u'.i' ';l_" = (. then
[ISGw)I? + Re{S" (jw)W ()} ]
[5Gw) + WGl i

Note that is §{jwg) + W(jwe) = 0, then X (jwp) = 0 and ¥ (jup) = 0 no matter what
the value of H{jwo).
() If 5(7w) and W(jw) are non-overlapping, then Re{ 5" (ju)W (jw}} = 0 for all w and so

Hi{jw) =

|5~”—'r=“‘- for W(jw) = 0,5(jw) #0
T =0, for W{iw) # 0, 5(jw) =10
O(arbitrarily), for W(jw) = 0,5(jw) =0

H{jw) =

Clearly, this is an ideal frequency selective filter.
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Taking the ioverse Fourier transform of the partial fraction expansion of H(jw), we
obtain the impulse response to be

hit) = e tuft) = e '%u(t).

Therefore, the step response is

s(¢) = A(t) = u(t) = [1 -t = ﬁ + i%e"“'] u(t).

The final value of this response is 9/10. Therefore, the time-constant 7 is the time at
which the response reaches 9/(10e). Therefore,

S ra Lo 9
[10 S T B T
is the equation that we need to solve.

(b) We may write H(jw) as

H(jw) = = Hi(jw) = Ha(jw)

1 1
14w 10+ 3w

Therefore, H(jw) may be viewed as the parallel interconnection shown in Figure 56.49.
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The first time constant is 7 = 1 and the second time constant is 73 = ;.
(¢) Dominant time constant is ¥ = 1. This approximately satisfies the equation of part

(a).
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(d) In this case,

1, |l
Hijw)=4 4 1< <2
0, |w] =2

This is as shown in Figure 56.50.
(a) We may write H(jw) as
H{jw) = Hip(jw) » [§lw - wo) + &(w + wp)] .

where Hy,(jw) is the frequency response of an ideal lowpass filter with cutofl frequency
%. Therefore,

h{t) = 2hyp(t) cos(wt),

where ——
hyp(t) = %ﬂ
(b) We have
iy 1 L Fw/10%
Hl(JUl——l",jﬁ' and H:(Jh-')—-—-—l_”ﬁ_’-

Therefore the Bode diagrams for these two filters are as shown in Figure S6.51.
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R 4

Figure 56.52

(¢) Since H{jw) = Hi(jw)Hzliw),
20log,o | H (jw)| = 2010g:g |H1 (jw)] + 2010810 [ H2 (7).

Therefore, the Bode diagram for the bandpass filter is the sum of the twe Bode diagrams
sketched in part (b).

§.52. (a) Sinee
~0.1|H(jw)| £ [16Gw)| - IH )] < 01H )l

we have
0.9|H(jw)| < 1GGw) € 1UH (w)]-

Therefore,
0.9lw| < |G(w)} = 11wl

This is sketched in Figure 56.52.
(b) From Figure P6.52(b) we have

¥(t) = l=(t) = 2(¢ = T)).

Therefore, 3
Y(e) = 5 X0 - e+ X ()]
and :
Cliw) = % - li-eH M= L e s TR Gniu T12).

Therefore, 5

|Gliw)| = Tl"i“(uﬂ'ﬁ}f.
v Gl _ |sin(wT/2)]

= lwT/2| -
249

where sa(ta) = A/10 and so(fy) = 94/10. Now,

'l_ig spht) = ‘lirnnﬂ sipltfa) = A.
Vie now need to find the limes ty and ¢; at which splt) is A/10and 9A/10, rclspcntive]y.
I sip{tz) = A/10, then so(t2/a) = A/10. This implies that tp = aty. Also, if sf,,(s,_) =
9A4/10, then sg(ts/a) = 94/10. This implies that 3 = aly. Therefare, the new rise-time
.ls n

i _2
r,=t;—!-_>=u(t.-—tu)=nf,—;.

7! is sketehed in Figure $6.54 as a function of w-
L4

Figure S6.54

6.55. We have

|B(jw)f* = mﬁm (86.55-1)

Also, |B(70)|* = 1. Therefore, |B(jws)|? = 1/2. From eq.(86.55-1), we conclude that
N
(‘fz) =1 = Wy = we.
e
Also, since |BU‘.|JA)|2 = 1/100, we may use eq.(86.55-1) to conclude that
N
(ﬂ) =00 = w,=(09)Mu
e
Therefore, the transition ratio is
Y5 _ (99PN = 104N,
Wy

This is sketched in Figure $6.55.

6.56. (a) The conditioning system with frequency response M) (jw) hoosts the frequen_cim that
are going to be most affected by the noise. Therefore, its frequency response is chosen
to have a magnitude plot as shown in Figure 6.56(a). Therefore.

(1+E),
H\ljw) = =——5,
l+ﬂ¥1)

where wy = 2w (5000) radfsec and wy = 22(10000) rad/sec.
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For |G{w)| to be within £10% of k|, we require the ahove rativ to be greater than
0.9. It can be easily sbown that for T = 1072, the above ratio falls below 0.9 for
WwT/2 = /20, that is, w = 31.4 rad/sec. Therefore, the magnitude of the frequency

of the approxi L within £10% of the ideal differentiator for
|wl < 31.4 rad/sec.

6.53. If 5(t) denotes the step response and h(Z) the impulse response, then
_ ds(t)
hit) = =

1fh(z) = 0, then %4 > 0. This implies that s(t) is a jeally non-decreasing function.

6.54. (a) The cutoff frequency 2m x 10? rad/sec in Hip(jus) maps to the frequency we = 27 x 10%/a
rad/sec in Hy(jw). Therefore,
2 % 10?
0= —
e

(b) We know from Table 4.1 that
z(at) <5 %xu'f}.
‘Therefore,
ipl®) = Sa(t/e) = g5ieho ()
(c) We know that :
sl f ho(r)dr.
Also, 2
)= [ " bt
Therefore, i
aplt) = :7 f_ lmhq{r,l’a)dr.

Let v’ = r/a. Then,
tfa
sip(t) = j ho(r')dr' = ag(tfa) = so(twe/(Zm x 10°)).

(d) Let
‘li!glu ag(t) = A.

‘Then
T =1 = o,
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N

(b) The bigher frequencies would appear boosted. This would make it sound like the
“treble” was higher.

(&) The system with frequency response Ha(jw) should undo the effects of H,(juw). There-
fore, it has to be the inverse system of H;(jw). The Bode plot for Ha(jw) would be as
shown in Figure S6.56.

A th(§e

oda x—
—|2AB 4
sin
bigure $6.56

Therefore,

Ez
(1+2

Sl
(1 + g)

where wy = 27(5000) rad/sec and w; = 2m(10000) rad/sec. The input (r) and the
output y(t) of Hajw) are related by the following differential equation

1 dyA(e) | 2 dylt) 1 de?(n) | 2 dx(t)
wf d? i G TP T

Hal(jw) =

+ z(t}

6.57. 1f s|n] denotes Lhe step response and h[n] the impulse response, then
hn] = s[n] = s[n - 1).
If Aln] 2 0, then s[n] > s[n = 1]. This implies that s[n| is a monotonically non-decreasing
function.
6.58. (a) The sequence of operations shown in Figure 6.58(a) may be interpreted as follows:
G(e™) = H(e™)X(e™)
R(e™) = Ge™™)H(e™) = H(e ™)X (e ) H(e™)
S(e™) = Rle™¥) = H(e™)X () H(e™") = Hi(e™) X ()

1
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[, (™) [ate™a|

©

<i=

3T ol
I'

£H
Kl=
e

Figure S6.58

Therefore,
Hy (&%) = H{&¥)H(e™ ™).

If An] is real, then H (™) = H'(e i+, Then
Hi(e™) = |H (&™)
Therefore,
hufn] = hin] « h[-nl.

Also, )
[Hy(e&)| = [H(e¥)}  and  <Hi(e¥) =0

(b) The sequence of operations shown in Figure 6.58(a) may be interpreted as follows:

Gle™) = H{e“)X(¢")

Re¥) = X(e*)H() o

Y(e*) = G(&¥)+ Rle™™)= X(&)H () + Hie ™)
Therefore,

Hayle™) = H{e™) + H{e™™).
If hln) is real, then H(&?) = H*(e~7). Theu
Hy(e) = 2Re{H(&™™)} = 2H(e*)| cos( aH ().

Therefore, g i
holn] = —--—--—[ﬂ} +2 1 “I.
Also,
|Ha(e) = 2H ()| cos(H (D))

{e) The plots for |Hi(e™)] and |H;(e?)| are shown in Figure 56.58.
Clearly, Method A is preferable because the magnitude of the zero-phase filter does
not depend on the phase of Afn).
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6.61. (a) We have ) _
Gle™) = H{e™)H(eM) = [H(e) P,

Therefore,
1G] = |H (&)

1t follows that the tolerance limits on |G(e?¥)| are given by
(1-&)P < IGENS+a), O0swsw
0 < |G <8, wlwsr

(b) 1f & << 1 and § << 1, then (1—&)? = 1 =26 and (14+6,)° = 1+24,. Also, 82 < by
Therefore, the passband ripple ¢ and the stopband ripple decreases.
() Tf N filters are caseaded, then the overall frequency response is

G‘e’”} A |H(¢’u)1'~f'~q"{°‘-’.

Therefore, _ !
iG(e™)] = |H{e™=N".

The tolerance limits are now:
(1-6" S IGE@I<+86)", 0<ww
0 < IG(E™)NS8, wmsSwsT
1t §, << 1, then (1=6;)¥ 21— Né; and (1 +&)V == 1+ N&,. Therefore, the tolerance
limits on |G(e™)| are given by
1= N&
0

IGle“) €1+ N§, 0Zww
IGle™) 28, wmLwsw

=
<

6.62. (a) From Figure P6.62(a) we have
w(e™) = [2X (™) - X(e¥YH (™)) H{e™).
Thercfore,
W(e™)
X (em)
Let H(?¥) = 1+ 6. Then G(e¥) =[2-1-&]1 + &) =1~ 5. Let H(e®) = 1=
Then G(e?) = [2 — 1+ ][l = &1 = 1 — &}. Therelore,

G(e™) = = [2- H(™)| H(e®).

1-8<GEv) <1, 0Swsuy

Therefore, A = 1 - & and B = 1. Let H(e*) = —&. Thea G(&**) = [2 - & %] =
267 — 63. Lot H(e) =& Then G(e?) = [2- &4)[&g] = 282 — 63. Therefore,

28, - RS G@¥) <2 -8, wSw<m
Therefore, C = —24; — 8% and D = 28 - 5}.
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6.59. (a) We have

E(e™) Ha(e™) — H(&™)

:;_: [halnje?*™ = hln]e "]

3 (hefn) = hinpen

n

Therefore, e[n] = haln] = h[n].
(b) Noting that E(e?™) is the Fourier transform of e[n], we may use Parseval's theorem to

obtain -
= o [ 1@ = 3 lelnl?
{c) We have
e o= Y lenl?

= ?:mlni - hfn]?
N-——Im o o0

= S lhan] - P+ 3 Ihaln)l® + 3 1halr]?
n=0 n=—-0o n=N

The last two terms in the right-hand side of the above equation are constant. The

-1
only variable term z:l.‘u[u] — hin]|® is minimized when h4ln] = hjn] in the range
a=0

0<n=N-=1
6.680. The development is identical to that in Problem 6.50. We have
™) = |§(e) - Y ()P
1S{e™) - H(e™)[S(e) + W(e=)]*
= |S(E) + HA(e™)|S(e%) + W(e)|?
—2H()[|S(@*) [ + Re{S" ()W (e™)}]

where H{e’) is assumed to be real. With Je(e)/8H () = 0, we obtain

(IS(™)2 + Re{S* (M)W (e™))]

ey 15(e) + W (=2

If for some wy, S(e“0) = W(e?0) = 0, then ¥ (e?*0) = 0 regardless of the value of H(e7¢).

(b}lfé,-:-c:and&,ccl,thmds:l-ﬂ,ﬂt:|+J’;‘,G:=—26;a-dﬂ=a&;.
Theref the passhand ripple is ller and the stopband ripple is larger.
() From part (a), we have

1G(e?)] = 12 = H(e)[|H{e)]-
Since [2 — H(e?)] <2+ [H(e9)| and |2 = H(e™)| 2 2 — [H(e™)|, we may write

[2- 1HE)] |H(E)] £ G™) < 2+ [H ()] [H ()]
(56.62=1)

1f H{e’) = 1, then from the above equation we obtain
1< 6% <3

If H{e*) = 0, then from the eq, ($6.62-1) we obtain
0<Gle™) s 0

Therefore, the filter is a good approximation of a lowpass filter in the stopband. But in
the passband, for some 8(w) it is possible to obtain extremely large ripple. Therefore,
averall it is not a good approximation for a lowpass filter.

(d) In Figure P6.62(a) if we attach a N point delay to H(e?), then the equivalent filter
will be a real filter that is a good approximation to & lowpass filter. We have scen that
in such a case the overall system is also a good approximation to lowpass.

6.63. (a) Let gln] = nh[n]. Then,

dH (')
e
Using Parseval's theorem (an also noting that g[n)] is real)

Gle) =3

S g2} = o [ 1G(e*) P
Y ot = 5z [ 16

n=—00
Therefore, - .
1 dH{e"")\
- 232 .
D= ..g‘mn Hiln] = ;- ‘———dw duw.

(b) Replacing H(e™) by |H(e/)[@*“) in the result of part (a),

1 oy dLH ()] ” ()|’
D= 5£|a“ o A et — I du

1 [ |dEE)]
dur

2x ) .

do 2
+ [H(&)] ;:)‘ el



Let M(w) = [H(e™)| and @(w) = H=). Also note that M{w) = M(-w). M'(w) =
M'{-w) and #lw) = #(-w). Therefore,

D 53; _£ 4 {IM'(w) + M(w)& (W)? + M () - M{w)8 ()]} do.

Now since the integrand is positive for all w, it is sufficient to minimize the integrand
to mumimize . Therefore,

B M) 4 MOEWF + 1MW) - MR} =0,

Simplifying this, we obtain
W) =0 = &) =0
However, since 8(w) is odd, the only function that satisfies Hlu)=0is@w)=n

6.64. (a) From Table 5.1 we know that when a signal is real and even, then its Fourier transform
15 also real and even. Therefore, using duality, we may say that if the Fourier transform
of a signal is real and even, then the signal is real and even. Therefore, A, [n) = htem]

By using the time shift property, we know that if H (&%) = H, (=)e= "M then

hln] = h,{n - M),

(b) We have
h[M + 1] = &, (M + n~ M] = A[n).

Also,
AM=n]=h[M-n-M= he[-n].

Siace h.[n] = h,[-n],
h[M +n] = h{M — n)

(e) Since hln| is causal, h{—k] = 0 for k > 0. But due to the SYmmetry property,
hl—k] = he[~k = M] = h,[k + M] = A[k + M)

Therefore,
hlk +2M] =0 fork > 0.

It follows that
hln]=0 forn>2M.

6.65. (a) We have

S 1 T
1B(e™)* = 1+ an?(w/2)  seci(w/2) cos(w/2).
257
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Figure 56.66

(d) Ia order for hfn] to be the impulse response of an identity system, we require that
h[n] = d[n]. From part (), we know that

hln] = ho[n} 3" dln ~ kN).

k=—oo

Therefore, the necessary and sufficient condition for hfn] to be 8[n] is

holO)= & and  RolkN] =0 for km £1,42,....

(b) If B(e™) = a cos(w/2), then
1[B(e™)]? = aa” cos?(w/2).
If we want this to be the same as part (a), then aa® = 1. Therefore,
o= )
(e) Taking the Fourier transform of the given difference equation we obtain

H(e™) = %:,:;;- = ot fe T = ¢ "R aedl2 oy gy,

Comparing with
B(e™) = ¢~3tw) [l,.w: i %c-;m]
= .

we find that H(e'”) = B(e’*) when

a=fi=

1=
=]
n

6.66. (a) Since hyin] = 72"/ py(n] we have
Hi(e™) = Ho(,.-{o-z-um)_
Below are shown the sketches of H(e™) for N = 16 in Figure 56.66.
(b) Overall frequency response of the system is H,(e?~) = Nz'lﬁ.,{n“] For this to s

k=0
an identity system, we require that Hew(e™) = 1 for all w. Therefare, we want ths
non-zero portions of the Hy(e/)s to be non-overlapping and yet caver the region fror
=7 to x. We see that this is achieved by having w, = =/N.

N-1
(€) Since Hoy(e™) = 3~ Hy(e'¥), we have

k=0

N-1 N=1 N-i
hoslnl = 3~ huln] = 3~ holnjer 40N — pojn] §™ prtrin/s
k=i k=0 k=l
Therefore,
N=-1
awensn _ | N, n=0+N 12N, ..
LB { 0,  otherwise :

k=0

el
Therefore, rjn] = N E dé[n — kN] and is as sketched in Figure 56,66,
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Chapter 7 Answers

7.1 Pm." the Nyquist nfnpiiug theorem, we know that only if X(jw) =0 for [ > w, /2 will
be signal be le from jts ples. Theref; , X (Jer) = 0 for |w] > 50007,

7.2, From the Nyquist theorem, we know that the sampling frequency in this case must be at
least “:-s= 20007 In other words, the sampling period should be al most T = 2nf{w,) =
1% 1073, Clearly, caly (a) and (c) satisfy this condition,

7.3. (a) Wg can eaa_i]y show that X (jw) = 0 for lw| > 40007. Therefore, the Nyquist rate for
this signal is wy = 2(4000%) = 8000y
(b) From Table 4.2 we koow that, Alw)isa rectangular pulse for which X(jw) = 0 for
jw| > 4000%. Therefore, the Nyquist rate for this signal is wy = 2{4000x) = 8000w,
(e) From Tables 4.1 and 4.2, we know that X{3w) is the convolution of two rectangular
pulses each of which is zero for Jwl > 40007, Therefore, X(jw) = 0 for jw| > 8000
and the Nyquist rate for this signal is wy = 2(80007) = 16000x.

T.4. If the signal 2(¢) has a Nyquist rate of wy, then jts Fourier transform X{jw) = 0 for
Jwl > wof2.
(a) From chapter 4,

v ==(t) + 2(¢ - 1) &L vy - x(Gw) 4o K ().
Clearly, we can only guarantee that ¥(jw) = 0 for |w] > wy/2. Therefore, the Nvquist
rate for y(¢) is also iwp. -
{b) From chapter 4,
dz)
ylt) = —‘% L Yiw) = jwx )

Clearly, we can only guarantee that ¥ (ju) = 0 for lw] > wy/2. Therefore, the Nyquist
rate for y(t) is also wy,

(e} From chapter 4,
) =20 5 Y (o) = (1/20)[X (jw) » X(ju)

Clearly, we can guarantee that Y(w) = 0 for k| > w. Therefore, the Nyquist rate for
ult) is 2y
{d) From chapter 4,

wlt) = z(t) cosfuwgt) 5 ¥ (juw) = (12X (j ~ wo)) + (1/2) X (G (w + wo)).

Clearly, we can guaranter that Y(w) =0 for [w] > wy + wyf2. Therefore, the Nyquist
rate for y(?) is Juwy.
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