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As shown in Example 9.1, the ROC will be Re{s} > —5.

(b) By using eq. (9.3), we can easily show that g(t) = Ae~%u{—t - tg) has the Laplace
transform

X{s)

Aelr+3ito
N TR

The ROC is specified as Re{s} < —5. Therefore, A =1 and f = - 1.

Using an analysis similar to that used in Example 9.3, we know that the given signaf his 2
Laplace transform of the form

1 1
5+9 * s+
The corresponding ROC is Re{s} > maz(—5, Re{f}). Since we are g,iven_r.ha;l the ROC
1s Re{s} > -3, we know that Re{8} = 3. There are no constraints on the imaginary part
of 4.

We know from Table 9.2 that

X(s) =

(1) = —e~'sin(20)u(t) <= Xi(s) = _ia_ﬁ?’—d’-‘ Re{s} > -1

We also know from Table 9.1 that
2(t) = 31 (=t} = X(3) = X)(~3).

The ROC of X(s) is such that if 5o was in the ROC of X, (s), then —so will be in the ROC
of X(s). Putting the two above equations together, we have

2(t) = z1(=1) = e ' sin(2tJu(—t) £ X(s) = Xi(—s) = —G_—Jsﬁ- Refs} < L.

The denominator of X (s) is of the form s? — 25 + 5. Therefore, the poles of X (s) are 1 +2j
and 1 - 2;.
(a) The given Laplace transform may be written as
2s+4d
G+hE+3)
Clearly, X{s) has a zero at s = —2. Since in X(s) the order of the dunonnnater

polynomial exceeds the order of the numerator polynomial by 1, X (#) has a zero at cc.
Therefore, X (s) has one zero in the finite s-plane and one zero at infinity.

X(s) =
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Chapter 9 Answers
9.1. (a) The given integral may he written as

=1
f (Sl st gy
o

If ¢ < =5, thea the function e~(+*M grows towards oo with increasing ¢t and the given
integral does not converge. But if ¢ > =5, then the integral does converge

(b) The given integral may be written as

f em(Bralt dut gy

Ifa > -5, then the function e=/*7¥ grows towards oo as t decreases towards —so6 and
the given integral does not converge. But if @ < —5, then the integral does converge.

(e) The given integral may be written as

5
[eonema

8
Clearly this integral has a finite value for all finite values of o.
(d) The given integral may be written as

o0
[" e
o0

If ¢ = =5, then the function ¢~ (3190 prows towards oo as t decreases towards =oo
and the given integral does not converge. If ¢ < —5, then the function e~ "7 grows
towards oo with increasing ¢ and the given integral does not converge. If o = 5, then
the integral still does not have a finite value. Therefore, the integral does not converge
for any value of o.

(e) The given integral may be written as
0 oo
/ c'l's""}‘e""d't+j e=tbrolt gt gy
s o

The first integral converges for ¢ < 5. The second integral converges if o > -5,
Therefore, the given integral converges when |o] < 5.

() The given integral may be written as

fo P e P
-

Il & > 5, then the function ¢™1~5**) grows towards co as ¢ decreases towards —oc and
the given integral does not converge. But if o < 5, then the integral does converge.

322

(b) The given Laplace transform may be written as

541 1

A= T DaEn) - =1

Clearly, X (s) has no zeros in the finite s-plane. Since in X (s) the order of the denomi-
nator polynomial exceeds the order of the numerator polynomial by 1, X(s) has a zero
at oo. Therefore, X (s) has oo zeros in the fuite s-plane and one zero at infinity.

(c) The given Laplace transform may be written as

(s-1s+s+1) _

X0 =—m

=1L

Clearly, X(s) has a zero at s = 1. Since in X(s) the order of the numerator palyno-
mial exceeds the order of the denominator polynomial by 1, X(s) has no zeros at oo
Therefore, X (s) has one zero in the finite s-plane and no zeros at infinity.

9.6. (a) No. From property 3 in Section 9.2 we know that for a finite-length signal, the ROC
is the entire s-plane. Therefore, there can be no poles in the finite s-plane for a finite
length signal. Cleacly, in this problem this is not the case.

(b) Yes. Since the signal is absolutely integrable, the ROC must include the jw-axis.
Furthermore, X (s) has a pole at s = 2. Therefore, one valid ROC for the signal would
be Re{s} < 2. From property 5 in Section 9.2 we know that this would correspond to
a left-sided signal.

() No. Since the signal is absolutely integrable, the ROC must include the ju-axis.
Furthermore, X (s} has a pole at s = 2. Therefore, we can pever have an ROC of
the form Re{s} > a. From property 4 in Section 9.2 we know that z(t) cannot be a
right-sided signal.

(d) Yes. Since the signal is ahsolutely integrable, the ROC must include the jw-axis
Furthermore, X{s) has a pole at s = 2. Therefore, a valid ROC for the signal could be
& < Re{s} < 2 such that @ < 0. From property 6 in Section 9.2, we know thit this
would correspond to a two-sided signal.

0.7. We may find different signals with the given Laplace transform by choosing different regions
of convergence. The poles of the given Laplace transform are

st mimes mesledE aal
5 = —a& &1 ==, 84 = 2"‘ 2}‘ =3 2.1-
Based on the locations of these poles, we my choose from the following regions of conver-

Bence:

(i) Refs)>-1

(ii) =2 < Re{s} < -3
(iii) =3 < Res) < -2
(ivi Re{a} < -3
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Therefore, we may find four different signals with the given Laplace transform.
9.8,  From Table 9.1, we know that

4(t) = e¥z(t) % G(s) = X(s - 2).

The ROC of G(s) is the ROC of X(s) shifted to the right by 2.

We are also given that X(s) has exactly 2 poles, located at s = =1 and s = =3
Sinee G(s) = X{s — 2), G(s) also has exactly two poles, located at 5 = =142 = i and
s = =3+2 = —1. Since we are given G{jw) exists, we may infer that the jw-axis lies 1n the
[.0C of G(s). Given this fact and the locations of the poles, we may conclude that glt) is
a two sided sequence, Obviously 2(t) = e~g(t) will also be two sided.

9.9.  Using partial fraction expansion
4 2
ST T
Taking the inverse Laplace transform,

z(t) = e u(t) = 2¢7Hu(t).

4.10. The pole-zero plots for each of the three Laplace transforms is as shown in Figure 59.10.

Im E [
X
__é' .: d:_ 'x I'N 1 Ly

Figure §0.10

(a) From Section 9.4 we know that the magnitude of the Fourier transform may be ex-
pressed as

1
{Length of vector from w to — 1)(Length of vector from w to —2)

We see that the right-hand side of the above expression is maximum for w = 0 and

decreases as w b more positive or more negative. Therefore |1, {juli
is approximately lowpass,
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Therefore.

Gls) = g[lzli_‘::_'“.']_

Comparing with the given equation for Gls),
1
a=-1, A= 3

9.14. Since X(s) has 4 poles and no zeros in the finite s-plane, we may assume that X (s} is of
the form

A
X(s)= (_R— a)(s = b)(s - e)s—d)

Since z(t) is real, the poles of X (s) must occur in conjugate reciprocal pairs. Therefore, we
may assume that b=a" and d =¢". This results in

A
Ale) e G-a)s—a)ls—clls=c)
Since the signal z(t) is also even, the Laplace transform X(s) must also b s Vs
implies that the poles have to be symmetric about the juw-axis. Therefore. we sy assame
that ¢ = —a", This results in

X(a) = (s=—a)(s—a*){s+a')(s + a)’

We are given that the location of one of the poles s (l;’?)e"’f‘. 1If we assume that this pole
is @, we have A

[P VL TP P TPy P TP

X(s) =

This gives us
W) o i
(-F+ s+ '\"5"' b
Also, we are given that
. fm (t)dt = X(0) = 4.
-oa
Substituting in the above expression for X (s}, we have A = 1/4. Therefore,
(1/4) :
FHIDE T 5D
9.15. Taking the Laplace transforms of both sides of the two differential equations, we have
sX(s)=-2¥(s)+1 and s¥(s]= 2X(s).

X(s) =

Solving for X (s) and ¥{s), we obtain

X(s) = 83:4

The region of convergence for both X{s) aud Y(s) is Re{s} > 0 because both are right-sided
signals.

and  Y(s) =257 +4.
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9.12.

9.13.

9.16.

. The overall system shown in Figure P9.17 may be

(b) From Section 9.4 we know that the magnitude of the Fourier transform may be ex-
pressed as

{Length of vector from w to 0)
(Length of vector from w to — } + 7%2)(Length of vector from w to — § ~ j3))

We see that the righ:-lu;;nd side of the above expression is zero for w = 0. It then in-
creases with increasing w| until jw| reaches §. Then it starts decreasing as |w| increases
even further. Therefore |H2(jw)| is approximately bandpass.

{(¢) From Section 9.4 we know that the magnitude of the Fourier transform may be ex-
pressed as
(Length of vector from w to 0)?
{Length of vector from w to — } + %)(Length of vector from w to — -3%))

We see that the right-hand side of the above expression is zero for w = 0. It then
increases with increasing |w| until |w| reaches §. Then |w| increases, |Hy(jw]| decreases
towards a value of 1 (because all the vector lengths become almost identical and the
ratio hecomes 1). Therefore |H3(jw)| is approximately highpass.

. X(s) has polesat s = —4 +532 and —4 -3, X(s) hnszernsar.s=§+336§ and & =i,

From Section 9.4, we know that {X (jw)| is

(Length of vector from w to § + j%3)(Length of vector from w to § — 3543‘_)__
(Length of vector from w to — § +j-¢}(b¢n§lh of vector from wto — § - ;"'.'-_?'J]

The terms in the tor and d
cancel out giving us | X (jw)| =1

tor of the right-hand side of the above expression

(a) If X(s) has only one pole, then z(t) would be of the form Ae™®'. Clearly such a
signal violates condition 2. Therefore, this statement is inconsistent with the given
infarmation.

(b) If X (s) has only two poles, then z(t) would be of the form Ae™* sin(w,t). Clearly such
a signal eould be made to satisfy all three conditions (Example: wo = 807, a = 19200).
Therefore, this statement is consistent with the given information.

(e) If X(s) has more than two poles (say 4 poles), then z(t) could be assumed to be of the
form Ae™*t sin{wot) + Be Msin{w,t). Clearly such a signal could still be made to satisfy
all three conditions. Therefore, this statement is consistent with the given information.

We have
X(s)= %_ Re{s} > -1.
Also,
Gis) = X(s) + aX(-s), -1<Refs}j<]l.
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Taking the Laplace transform of both sides of the given differential equation, we obtain
Y (s)[s® + (1 + a)s® + alu + 1)s + o] = X(s).

Therefore,
¥(s) 1

B = Y = i ol toa T Ins

(m) Taking the Laplace transform of both sides of the given equation, we have
Gls) = sH(s) + H(s).
Substituting for H(s) from above,

(s+1) - 1
S+(l+a)f+afa+l)ls+al s+as+od
Therefore, G(s) has 2 poles.
(b) We know that

Gis) =

1
His).m {5+ 1){s? + s + a?)’
Therefore, F () has poles at —1, a{—% +j5'?), and n-(—% —jlg}. If the system has to
be stable, then the real part of the poles has to be less than zero. For this to be true,
we require that —a/2 <0, ie, a > 0.

i as two feedback sy of the
form shown in Figure 9.31 connected in parallel. By carrying out an analysis similar to that
described in in Section 9.8.1, we find the system function of the upper feedback system to

be 2 2
£
&) = G T e
Similarly, the system function of the lower feedback system is
Ha(s) = 1/s 1

T+20/2) s+2
The system function of the overall system is now

H(s) = Hi(s) + Ha(s) = ?%’r%g.
Since H(s) = Y(s)/ X (s), we may write
Y (s)[s? + 108 + 16] = X (s)[3s + 12).

Taking the inverse Laplace transform, we obtain

dy(t) dy(t) = dx(t)
g P10 + 16y(e) = 12:(1) + 35
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918 |a) From Problem 320, we know that the differential equation relating the input and
output of the RLC circuit is

dy(t)  dy(t) _
& + . +y(t) = z(¢).
Taking the Laplace transform of this (while noting that the system is causal and stable),
we obtain
Y{s)[s® + 8+ 1] = X{(s).
Therefore,

¥{(s) 1;
X)) s#4s+l

Hs) = Refs} = —%.

{b) We note that H(s) has two poles at s = —} -:"{-’- and 5 = -} +:‘Q§- It has no zeros
in the finite s-plane. From Section 9.4 we know that the magnitude of the Fourier
transform may be expressed as

1
(Lengeh of vector from w to — § + 5 %3)(Length of vector from w to — § — 132))

We see that the right-hand side of the above expression increases with increasing fewl
until |w| reaches & Then it starts decreasing as |w] increases even further. It finally
reaches 0 for |w| = oo, Therefore Hy(jw)| is approximately lowpass.

(¢) By repeating the analysis carried out in Problem 3.20 and part (a) of this problem with
R = 1071, we can show that

53 1 .
Hig)= 263 = Aol Reuh>-0oois
(d) We have
i
{Vect. Len. from w to — 0.0005 + j32)(Vect. Len. from w to — 0.0005 - ;33))

We see thal when |w| is in he vicinity 0.0005, the right-hand side of the above equation
takes on extremely large values, On either side of this value of |w| the value of |H(jw)]
rolls off rapidly. Therefore, H(s) may be idered to be approximately bandpass.

9.19. (a) The unilateral Laplace transform is
oo
X(s) = f e Mu(t + 1)e " dt
oﬂ
o f Mty

a+2
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Figure 59.21

(¢) The total response is the sum of the zero-state and zero-input responses. This is
ylt) = 2e~*u(t) - e *u(t).
9.21. The pole zero plots for all the subparts are shown in Figure 59.21.
(a) The Laplace transform of z(t) is
o
X9 = (6™ + e e dt

]
= [-e Yo 4 2 + e (o + I
O N W ... 3
s+2 343 s2+5s46

The region of convergence (ROC) is Refs) = -2
(b) Using an approach similar to that shown in part (a), we have

1

—4t £ &
e Yult) +— ot Re{s} > -4
Also, .
—Bt_jbt AR S o
e e u(an+5—j5' Refs} > =5
331

9.20.

(b) The unilateral Laplace form is g
fmlﬂ(? + 1) + 8t} + et 4 1)) dt
o=

/ "16(0) 4 ¢ 2y

&

A(s)

«

= 1
+a+2

{e) The unilateral Laplace transform is

o0
j e~ ult)e=*ule)le™*dt
-

y £ F[‘_m""_“l‘_“dt
0-
1

1

s+t

X(s)

In Problem 3.19, we showed that the input and output of the RL eircuit are related by
dylt) o

P 4 (o) = =),

Applying the unilateral Laplace transform to this equation, we have

s¥(s) = w(07) + (s} = X(s).

(a) For the zero-state response, set y(07) = 0. Also we have

1

X(s) =UL{e M ul(t)) = =

‘Therefare,
e =ik
Yisis+1)= J—+ 3

Computing the partial fraction expansion of the right-band side of the above equation
and then taking its inverse unilateral Laplace transform, we have

ylt) = e”tule) — e Hu(t).

{b) For the zerc-input response, assume that z(t) = 0. Since we are given that y(07) = 1,

= Y(s) = ] .

sVs)—1+X(s)=0 31

Taking the inverse unilateral Laplace transform we have

w(t) = e u(t).
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and

e=3emi%y (1) £y Re(s} > ~5.

—_—
s+5445"
From this we obtain

e B PO O L YOO L c 5

e sin(St)u(e) 2_,'[‘ 5 S (r) GTITED
where Re{s} > —5. Therefore,

57 + 155 + 70

Sl R - R 3
ST+ 1457 + 905 + 100" ¢(s} >

(4]

e %u(t) + e sin(St)u(t)
(¢) The Laplace transform of =(t) is
o
f (e + e*)e*dt

= [l fs - gy + [ /s - D20
1 2 i 22 25 -5
5-2 5-3 s1-5s5+6
The region of convergence (ROC) is Re{s} < 2.
(d) Using an approach along the lines of part (a), we obtain
1

Xis)

n

=2t £ - 59,21~
e Muft) +— =3 Re{s} > -2 (S9.21-1)
Using an approach along the hines of part (c), we obtain
etu(—t) £ 312, Rels} < 2. (59.21-2)
From these we obtain
e = e u(t) + e®u(—t) £ ;52:;3. -2 < Refs) <2
Using the differentiation in the s-domain property, we obtain
L £ d [ 21 257+ 8 ‘
te irlf...-a[;_‘,—:‘ = ~2< Refs} <2
(e) Using the differentiation in the s-domain property on eq. (59.21-1), we get
d 1 1
e Pult) 5 - | — | = -2
u(e) & [a+2] G el
Using the diff; in the s-d property on eg. (59.21-2), we get
d 1 1
~te¥ul—1) £ = |o—u| = mo—me 2
teu( )t—}d" = G Ref{s} <2
Therefore,
[tle=2 = te~Hu(t) + —teTu(—t) +s 4 -2 < Refs} <2

(s + 2)2(s - 2)*’
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(f) From the previous part, we have

[tletu(—t) = —te™u(—t) P2 "(‘,__ig)ir Rels} <2

(g) Note that the given signal may be written as =(t) = ult) = u(t = 1). Note that
u(t) 5 E. Refs} > 0.

Using the time shifting property, we gel

u(t —1) 5’- Re{s} > 0.
Therefore,
e 1-¢™*
uft) — uft — 1) +=+ — All 5.
Note that in this case, since the signal is finite duration, the ROC is the et - lane.

(k) Consider the signal 7, (t) = t[u(t) —u(t= 1)) Note that the signal z(t) may be expressed
as z(t) = 21 (t) + 21{—t + 2). We have [rom the previous part

u(t) - u(t — 1) £ 1—"3: All's.

Using the differentiation in s-domain property, we have

2(6) = tlult) - ult - )] < % [' “:_'] - i”__%l Al s
Using the time-scaling property, we obtain
O+t SO S ('Y
Then, using the shift property, we have
R PLIpe e LA
Therefore,
z(t) = zy(t) + 2~ + 2} P it ’a:+=-' -2 23¢! :,‘,] +e". All 5.

(i) The Laplace transform of z(¢) = §(t) + u(t) is X(s) = 1+ 1/s, Refs} > 0.
(i) Note that §(31) + u(3t) = §(¢) + u(t). Therefore, the Laplace transform is the same as
the result of the previous part.

9.22. (a) From Table 9.2, we have
z(t) = %sin(:‘;ﬁ)u{t).
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(g) We may rewrite X(s) as
L
s+1p2
From Table 9.2, we know that
1
tu(t) £ & Re{s} > 0.
Using the shifting property, we obtain

ettult) 5

o +l ek Refs} > -1.

Using the differentiation property,
4, et — et N -1
dt!e tu(t)] = e”ult) — te~ ult) FE Y Refs} > -1

Therefure,
2(t) = &(t) — e tu(t) - 3te ™ ult).

424, The four pole-zero plots shown may have the following possible ROCs:
oPlot (a): Re{s} < —20r =2 < Refs}p<2or Ref{s} > 2.

«Plot (b): Refs} < =2 or Refs} > -2

oPlot (¢): Refs} <2 or Refs} > 2.

oPlot (d): Entire s-plane.

Also, suppose that the signal z{t} has a Laplace transform X (s) with ROC R.
(1) We know from Table 9.1 that
e~ ¥x(t) 5 X(s+3).
The ROC R, of this new Laplace transform is R shifted by 3 to the left, If z{f)e ¥ is
absolutely integrable, then /) must include the juw axis.
Far plot (a), this is possible only if R was Re{s} > 2.
«For plot (b), this is possible only if Rt was Refa} > -1
«For plot (¢}, this is possible only if R was Rels} > 2.
«For plat (d), R is the entire s-plane.
(2) We know from Table 9.2 that
—t £ ) =
] u(!}i—b-—8+1, Re{s} > -1
Also, from Table 9.1 we obtain
X(s)

z(t) s [e7'ult) ¢S =5, Ra=RO[Refs} > -1)

If e=*uft) » z(t) 1s absolutely integrable, then Ry must include the ju-axis
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{b) From Table 9.2 we know that
L 3
cos(3t)u(t) +— 75 Re{s} > 0.
Using the lime scaling property, we obtain

eos(3t)u(—1) 54 — Refs} < 0.

Sl
249
Therefore, the inverse Laplace transform of X (s) is
z(t) = — cos(3t)ul=t).
{c) From Table 9.2 we know that
1

£ 5 -
' cos(3t)ult) +— (s_—-ﬁm‘ Re{s} > 1L
Using the time scaling property, we obtain
-t 7 s+l
e cos(It)ul—t) +— STV Rels} < L

Therefore, the inverse Laplace transform of X(s) is
z(t) = —e" cos(3t)u(—t).
(d) Using partial fraction expansion on X (s), we obtain
ok Tl
s+4d s+3
From the given ROC, we know that z(t) must be a two-sided signal. Therefore,
z(t) = 2e™u(t) + e Mu(-t).

X(s) =

(e) Using partial fraction expansion on X (s), we obtain
2 1
X =357+
From the given ROC, we know that z(t) must be a two-sided signal. Therefore,
z(t) = 2¢ Hu(t) + e Hu(-1).

(f) We may rewrite X(s) as

3s
sT—3+1

s
Y EoRr T ARy
s =1/2 N 32

(517207 + (V3/2)2 (s = 1/2)2 + (V3/2)?

X(s) = 1+

1+3

Using Table 9.2, we obtain
2(t) = 8(¢) + 3¢ "% cos(v3e/2)u(t) + vBe~/? sin(vBt/2)u(t).

334

oFor plot (a), this is possible only if R was —2 < Re{s} <2.
oFar plot {b), this is possible caly if R was Re{s} > -2.
+For plot (c), this is possible only if R was Re{s} < 2.
«For plot (d), R is the entire s-plane.
(3) If z{£) = 0 for ¢ > 1, then the signal is a left-sided signal or & finite-duration signal.
sFor plot (a), this is possible only if R was Re{s} < —2.
#For plot (b), this is possible only if R was Re {s} < -2.
oFor plot (c), this is possible only if B was Re{s} < 2.
«For plot (d), R is the entire s-plane.
{4) If z{t) = O for t < —1, then the signal is a right-sided signal or a finite-duration signal.
oFor plot (a), this is possible only if R was Re{s} > 2.
sFor plot (b), this is possible only if R was Re{s} > -2.
«For plot (c), this is possible only if B was Re{s} > 2.
oFor plot (d), R is the entire s-plane,

9.24. (n) The pole-zero diagram with the appropriate markings is shown in Figure 89.24
I 1

@ e g

-y,

(Ch)

Figure 59.24

{b) By inspecting the pole-zero diagram of part (a), it s clear that the pole-zero diagram
shown in Figure 59.24 will also result in the same | X (jw). This would correspond to
the Laplace transform

Xi(s) =s—%, Re{s} <%.
(e) aX(jw) =7 = 4X1(jw).
(d) X2(s) with the pole-zero diagram shown below in Figure 59,24 would have the property
that €Xz(jw) = <X (jw). Here, Xz(s) = .—__]-lﬁ—
(e) [Xalijwll = L/IX (5w)l.
() From the result of part (b}, it is clear that Xy(s) may be obtained by reflecting the
poles and zeros in the right-half of the s-plane to the left-half of the s-plane. Therefure,

54 1/2

Xi{s) = FEE T
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Figure 58.25

From part (d), it is clear that X3(s) may be obtained by reflecting the poles (zeros)
in the right-half of the s-plane to the left-half and simultaneously changing them to

zeros (poles). Therefore,
(s+1)°

Xalo) = GT I+

9.25. The plots are as shown in Figure §9.25.

9.26. From Table 9.2 we have

21(8) = e Hu(t) < X, (s) = ﬁ, Refs} > -2
and i
nlt) = e Hul) € Xals) = 5. Refs} > -3,

Using the time-shifting time-scaling properties from Table 9.1, we obtain
~2

zi(t - 2) £ e~ X (s) = :—2. Rels} > -2

and

Py
ral—t+3) 5 P Xo(~8) = T Refs) = -3
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(b) Sinee y(t) = x(t) « A(t), we may use the convolution property to obtain

Y(s) = X(s)H(s) = m

The ROC of Y(s) is Re{s} > =1,
(e) Performing partial fraction expansion on ¥(s), we obtain

1 1
YO =g+

Taking the inverse Laplace transform, we get
pit) = e tult) — e Hu(t).
(d) Explicit convolution of z{t) and h(t) gives us
y(t) = [ Kr)z(t = v)dr
—og
-3
= f e e Tyt = 7 )dr
o
t
= a."'f eTdr fort>0
0
= e — e Mu(t).
8.30. For the input z{t) = u(t), the Laplace transform is
X{s)= i, Refs} >0

The corresponding output y(t) = [I ~ e~ — te~“ju(t) has the Laplace transform

1 1 1 1
¥(s) = ;_m_m E*_(:‘TIT’-' Re{s} = 0.
Therefore, Yis) 1
L7 S
O =30 = e el >0

Naw, the sutput yi{t) = [2 = 3e™* + e~¥Ju(t) has the Laplace transform
. P 6

s+1 s5+3  s(s+1){z+3)

Therefore, the Laplace transform of the corresponding input will be

_Y|{3J=6.1+l}
X|{J]—m L Refs} > 0.

Yils) = % - Re{s} = 0.

Taking the inverse Laplace transform of the partial fraction expansion of Xi(x!. we oblaun

zo(t) = 2ult) + e~ u(e).
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Therefore, using the convolution property we obtain

-2 N
WO = 240t~ 2) o za(~t 4+ 3) ¢ Y (s) = [h] [: _J_‘] .

9.27. From clues ! and 2, we know that X(s) is of the form
A
(sta)s+b)
Furthermore, we are given that one of the poles of X (s) is -1 + 7. Since z(t) is real, the

poles of X (s) must occur in conjugate reciprocal pairs. Therefore, a=1—jand b= 1 + :
and

X(s) =

A
H(s)= Grl-J)e+1+7)

From clue §, we know that X{0) = & Therefore, we may deduce that A = 16 and

16

B = e

Let R denote the ROC of X(s). From the pole locations we know that there are twe
possible choices of R. R may either be Re{s} < =1 or Re{s}] > 1. We will now use clue
4 to pick one. Note that

vt) = ¥2(t) 5 Y(s) = X(s - 2)
The ROC of ¥(s) is R shifted by 2 to the right. Since it is given that y(t) is not absolutely
integrable, the ROC of ¥(s) should not include the jw-axis. This is possible vnly of R is
Re{s} > -1.
9.28. (a) The possible ROCs are

(i} Refs}< -2

(ii) =2 < Refs} < -1.

(i) =1 < Refs} < 1.

(iv) Re{s} > 1.
(b) (i) Unstable and anticausal,

(1i) Unstable and non causal,

(iii) Stable and non causal,

(1) Unstable and causal,

9.29. (a) Using Table 9.2, we obtain
1

X(s) = L Re{s} > -1
and y
H(s) = Pyt Ref{s} > -2.
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9.31. (a) Taking the Laplace transform of both sides of the given differential equation and sim-
plilying, we obtain
¥(a) 1
H(s) = =t = =2
(8) X(s) s2-s5-2

The pole-zera plot for H(s) is as shown in Figure 59.31.

Im
* -
Figure §9.31
(b) The partial fraction expansion of H(s) is
RV
H(‘)=.1—‘2_.ﬂ+1-

(i) If the systera is stable, the ROC for H(s) has to be =1 < Re{s} < 2. Thercfore,
Alt) = = 2e¥u(=1) - Fetule)
(ii) If the system is causal, the ROC for H{s) has to be Re{s) > 2. Therefore,
1
hit) = jr:'ufl') - %c_'u{ij.

(iii) If the system is neither stable nor causal, the ROC for H(s) has to be Refs} < 1.
Therefore,
1
he) = =geMu(-0) + -;.e-‘u(—:).
9.32. If z(t) = ¢ produces y(t) = (1/6)e®, then H(2) = 1 /6. Also, by taking the Laplace
transform of both sides of the given differential equation we get
5+ b(s + 4)
s+ 4)(s + 2)°
Since H(2) = 1/6, we may deduce that b = 1. Therefore,
As+2) -2
s(a+4)(s+2)  s(s+4q)

Hs) =

Hs) =
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9.33.

.34,

Since zit) = ¢ M = e7tu(t) + e'u(=t),

1 -2

1
x(‘)'m—‘;j"_"f=[7:1—)(;'_—”. -1 <Re{s} <1

We are also given that
s+1

S4+2s+2
Sinee the poles of H(s) are at —1 = j, and since h(t) is causal, we may conclude that the
ROC of H{s) is Re{s} > =1. Now,

His)=

-2

Y(s) = H(s)X(s) = (sT+21+2) (s ”’

The ROC of ¥{s) will be the intersection of the ROCs of X(s) and H(s). Thisis -1 <
Re{s} <1
We may obtain the following partial fraction expansion for ¥ (s):

o 2/5 | 2s/5+6/5
L s = 7y 4

We may rewrite this as
_ s 2 s+l 4 1 ]
YO==5 TE [(34-1}"4-1] *3 [(;-o-x)h.—l

Noting that the ROC of ¥(s) is =1 < Re{s} < 1 and using Table 9.2, we ohtain

ylt) = gg‘u{—:) + %n" costu(t) + %c"'sintu(t}.

We know that . 1

2i{t) = ult) #= Xals) = 2,
Therefore, X)(s) has a pole at s = 0. Now, the Laplace transform of the output u (f} of
the system with =(t) as the input is

Yi(s) = H{s) X, (s).

Re{s} >0

Since in elue 2, ¥;(s) is given to be absolutely integrable, H{(s) must have a zero al 5 = 0
which cancels out the pole of Xy(s) at s =0.

We also know that
zolt) = tult) ¢54 Xa(s) = ;1, Refs} > 0.

Therefore, X3(s) has two poles at s = 0. Now, the Laplace transform of the output wa(t)
of the system with z3(¢) as the input is

Yals) = H(s)Xz(s).
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kowew Porfies:

wlt)

Figure 89.35

Thercfore, f(t) = dyi(t)/dt. Similarly, e(t) = df(t)/dt. Therefore, elt) = Py () fde®.
From the block diagram it is clear that

d* d
o) = ) - 710 - 63a(0) = TonD - B )

Therefore,

¥(s) = s*Yi(s) - s¥y(s) = 6¥1(s). (59.35-1)
Now, let us determine the relationship between yi(t) and z(t). This may be done
by concentrating on the lower half of the above figure. We redraw this in Figure 59.35.
From Example 9.30, it is clear that y(t) and z(t) must be related by the following
dillerential equation: £ i
wlt) 1 (E — 2t
—z 2——‘”' + wft) = ={t}

Therefore,
X(s)

s+ 2541
Using this in conjunction with eq (59.35-1), we get

Y.(a) =

&2 =56
ity J5+23+]x(3}

Taking the inverse Laplace transform, we obtain

‘f?;(,'} + 2"% +ylt) = f:l—?) 3 L‘% - 6x(t).
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Since in clue 3, ¥3(s) is given to be not absolutely integrable, /(s) does not have twa zeros
at s = 0. Therefore, we conclude that H(s) has exactly one zero at s = 0.

From Clue 4 we know that the signal
d2h(t) |, dhit)
Plt) =~ + 25~ + 2h(t)
is finite duration. Taking the Laplace transform of both sides of the above equation, we get
P(s) = s*H(s) + 2sH(s) + 2H(s).

Therefore,

P(s)
4 20+2
Sinee p(t) is of finite duration, we know that P(s) will have no poles in the finite s-plane.
Therefore, H{s) is of the form

H(s) =

N
Ats = =)
=1
) = sy
where z;, 3 = 1,2,++- , N represent the zeros of P(s). Here, A is some constant.

From Clue 5 we know that the denominator polynomial of H(s) has to have a degree
which is ezactly one greater than the degree of the numerator polynomial. Therefore,

_ Als-=#)
Hiz) = S+2s+2

Since we already know that H(s) has a zerv al s = 0, we may rewrite this as

As

#)e s

From Clue 1 we know that H(1) is 0.2, From this, we may easily show that A = L.
Therefore, a
Hiak= 2 +254+2
Singe the poles of H{s) are at —1 % j and since h(t) is causal and stable, the ROC of H{s)

is Re{s} > -1.

9,35, (a) We may redraw the given block diagram as shown in Figure §9.35

9.36.

From the figure, it is clear that

PO vy
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Figure $9.36

{b) The two poles of the system are at —1. Since the system is causal, the ROC must be to
the right of s = —1. Therefore, the ROC must include the juw-axis. Hence, the system
is stable.

(a) We know that ¥;(s) and Y (s) are related by
Y (s) = (25° + 45 = 6)Yi(s).
Taking the inverse Laplace transform, we get

d? d
ylt) = 2%('} + 4——‘:‘“) —6ylt).

(b) Since ¥i(s) = F(s)/s, f(t) = dy(t)/dt.

(c) Since F(s) = E(s)/s, e(t) = df (1)/dt = d*y {t)/dt*.

(d) From part (a), y{t) = 2e(t) + 4/ (t) - 6y ().

(e) The extended block diagram is as shown in Figure 59.36.
(F) The block diagram is as shown in Figure 59.36.

(g) The block diagram is as shown in Figure 59.36.

The three subsy may be ted in parallel as shown in the figure above to
obtain the overall system

9.37. The block diagrams are shown in Figure 59.37.
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Figure 50.37

$.28. (a) We may rewrite H(s) as

wo= [ e [ [

H(s) clearly may be treated as the cascade combination of four first order subsystems.
Consider one of these subsystems with the system function

The block diagram for this is as shown in Figure 59.38. Clearly, it contains multiplica-
tians with coefficients that are not real.

{b) We may write H{s) as

1 1
H(s) = [m] [m] = Hy(s)Ha(s).

The block diagram for H(s) may be constructed as a cascade of the block diagram of
Hy(s) and Hy(s) as shown in Figure 59.38.

345
fe) We have
. e
Gls) = Xi(s)Xz(s) = _——__[s+2)ls+3]

bl
s+2 s+3
Taking the inverse Laplace transform, we obtain
glt) = ﬂ-:{xq-u“u +1)- e~ My 4 1)
(d) We have

-3
R(s) = Xils)dals) = (sT;}(Trﬂ—)

s 1
ne? e
3+2 s5+3
Taking the inverse unilateral Laplace transform, we obtain
r(t) = e ¥ 3u(t) - e~y ),
Clearly, r(t) # glt) for t > 07,

9.40. Tuking the unilateral Laplace transform of beth sides of the given differential equation, we
et

SY(s) — sfy(07) = sy'(07) = "(07) + 637 V(s) — Gsu(07)
—6y(07) + 118)(s) = 11y(07) + 6¥(s) = X{s). (89.40-1)

{a) For the zero state response, assume that all the initial conditions are zero. Furthermuore,
from the given z(t) we may determine
1
] R
Xs) = Re{s}
From eq. (59.40-1), we get
1
3 2 - —
Y(s)[s® + 6s* + 118 + 6] =

Therefore, ;
YO = Cr@ v e + 115+ 6)

form of the partial fraction expansion of the

Taking the inverse unilateral Laplace
above equation, we get

w(t) = %e"u(t} - %e""u(t} + %c'”u(l) - %E""U[f)-
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k) )

(c) We may rewrite H(s) as

_1 85+ 3 1 l1-—= = X
100 =} [y + 3 [ ] = ) + 209

The block diagram for H{s) may be constructed as a parallel combination of the block
diagrams of H3(s) and Hy(s) as shown in Figure 59.38.

9.39. (a) For zy(t), the unilateral and bilateral Laplace transforms are identical.

Xio) = X() = 5. Rels) > -2

(b} Here, using Table 9.2 and the time shifting property we get

Xalo) = =5, Refs}> -3,

The unilateral Laplace transform is

1
243"

Ay(s) =3 Re{s} > -3.
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(b} For the zero-input response, we assume that X(s) = 0. Assuming that the milal
conditions are as given, we obtain from (59.40-1)

Y(s) = _ s 48s48 1
S 4652+ 1ls+6 s+l
Taking the inverse unil I Laplace t fi of the above equation, we get

u(t) = e fult).
(c) The total response is the sum of the zero-state and zero-input responses.
u(t) = Fe~tult) - Leu(t) + e ult) - Lo Mul)
9.41. Let us first find the Laplace transform of the signal y(t) = z(—t). We have
o0
Yi{s) = f (~t)e "dt
-

= juz(t)e“dt
= X(-—s).

(a) Since z({t) = z(~t) for an even signal, we can conclude that L{z(t})} = L{z(-1)}
Therefore, X(a) = X(—8).
(b) Since 2{t) = —z(~t) for an odd signal, we can conclude that L{z(t)} = ~£{z(~11}.
Therefore, X (s) = =X(-s).
(c) First of all note that for a signal to be even, it must be either two-sided or finite
duration. Therefore, if X (s) has poles, the ROC must be a strip in the s-plane.
From plot {a}, we get

As
e T e
Therefore, A
=-AS
X(-3)= {_—s— NG = - X(s).

Therefore, z(t) is not even (in fact it s odd).

For plot (b), we note that the ROC cannot be chosen to correspond to a bwo-sided
function z(t). Therefore, this signal is not even.

From plot (c), we get
Als—j)(s+3) _ A(s*+1)

X =G e-1 - o1
Therefore, o
X{-s)= —_——a X(s)

Therefore, z(t) is even provided the ROC is chosen to be —1 < Re{s} < L.
For plot (d), we note that the ROC cannot be chosen to correspond Lo a two-sided
function z(t). Therefore, this signal is not even.

348



942, (a) From table 9.2 we know that the Laplace transform of t?u(t) is 1/s® with the ROC
Re{s} > 0. Therefore, the given statement is false.

(b) We know that the Laplace transform of a signal z(¢) is the same as the Fourier transform

of the signal z(t)e™"", The ROC is given by the rauge of o for which this Fourier

transform exists,
Now, if z(t) = e u(t), then we note that as { — oo, the signal z(t) becomes

unbounded. Therefore, for the Fourier transform of of e”™%'z(t) to exist, we need to
find a range of o which ensures that €™°'z() is bounded as ¢ — 5. Clearly, this is not

possible. Therefore, the given statement is true.
(€} This statement is true. Consider the sigual z(t) = e™'. Then

(wo—a) |

X0 = [T emeta= &
~oo Jug — 3

This integral does not converge for any value of s.

(d) This is false. Consider the signal r(t) = &™9%y(1). Then
- -|™

X(s) = [Teomtemsar = 2
o Jwo =5 |

This integral converges for any value of 5 > 0,
(e) This stat t is false. Consider the signal z(t) = |t|. Then

o0 0
X(s) = / te™"dt + j — te™*dt.
o =

Both integrals on the right-hand side converge for any value of s > 0.

9.43. We are given that A(t) is causal and stable. Therefore, all poles are in the left half of the

s=plane.

(n) Note that
olt) = 9‘% £\ Gla) = sH(s).

Now, G/(s) has the same poles as H(s) and hence the ROC for G(s) remains the same.
Therefore, g(t) is also guaranteed to be causal and stable.

(b) Note that
His)

r(t) = fma-:r)af & Ris) = 22

Note that f(s) does not have a poleat s = 0 ondy if H(s) hasa zero at s = 0. Therefore,
we cannot guarantee that r(t) is always causal and unstable

ﬁﬂ = E

X(s) ~ (s42(+1)
We know that the ROC of ¥(s) has to be the intersection of the ROCs of X(s) and
H(z). This leads us to conclude that the ROC of H(s) is Res} > -1.

(b) The partial action expansion of H({s) is

2 1

3+2 s5+1

H(s) =

Hi{s) =

‘Therefore,
hit) = 26" Hy(t) = e tu(t).

(¢) ¢™ is au Eigen function of the LTI system. Therefore,

y(t) = H(3)e™ = z%e"

Since y(¢) 15 real, the third input must be of the form &% Sinee z(t} is of the form
4(£) + e + £%" and the output is y(t) = —Ge~"u(t) + fe¥ eos(3t) + Be" sin(3t), we may
conclude that H(4 3j) = & = 548

Let us try h(t) = 5(t) - 6e™"u(t). Then

9. 46,

§=5
s+1

H(s) =

We mnay easily show that H(43j) = & £715. Therefore, H(s) as given above is consistent
with the given information.

1-47. (a) Taking the Laplace transform of y(t), we obtain

Yi) =5 Rels}>-2

Therefore,
¥(a) 2+ 1

X =70 " eone+s

The pole-zero diagram for X (s) is as shown in Figure §9.47. Now, the ROC of H(s) is
Re{s} > —1. We know that the ROC of Y{s) is at least the intersection of the ROCs
of X(s) and H(s). Note that the ROC can be larger if some poles are canceled out by
zeros at the same location. In this case, we ean choose the ROC of X(s) vo be either
—2 - Tef{s} < lor Re{s] > 1. In both cases, we get the same ROC for ¥(s) because
the polesat s = —1 and s = 1 in H(s) and X(s), respectively are canceled out by zeros.

The partial fraction expansion of X/(s) is
2,

e
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9.44. (a) Note that
8t —nT)ep =T, Apg
Therefore,

o0
i ~nT_—snT _ 1
X(e) ,‘2‘ € = e

In order to determine the ROC, let us first find the poles of X(s). Clearly, the pole
occur when e~T{148) = | Thig implies that the poles 5, satisfy the following equatior

e Tl ) = ofh2x k41 4a
Taking the logarithm of both sides of the above equation and simplifving , we get

jk2
o= —I+J—Tz,k=0.11‘12_... :

Therefore, the poles all lie on a vertical line (parallel to the ju-axis) passing througt
5= —1. Since the signal is right-sided, the ROC is Re{s} = —1.

(b) The pole-zero plot is as shown in Figure 59.44.

| In
I‘ CLIE
x e
- ? R‘
* AT
i
T -unt
: Figure 59.44

(e) The magnitude of the Fourier transform X (jw) is given by the product of the reciprocals
of the lengths of the vectors from the poles to the point jw. The phase of X(jw) is given
by the negative of the sum of the angles of these vectors. Clearly from the pole-zern
plot above it is clear that both the magnitude and phase have to vary periodically with
a peried of 2a/T.

9.45. (a) Taking the Laplace transform of the signal =(t), we get

_ 23 13 s
Loy S G-26-1

The ROC is -1 < Re{s} < 2. Also, note that since z(t) is a left-sided signal, the ROC
for X (s) is Re{s} < 2.
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Le)

Figure 59.47

Taking the ROC of X(s) to be —2 < Re{s} < II, we get
z(l) = —;e'u(—l‘.) + ile_z'u(!}.

Taking the ROC of X(s) to be Refs} > 1, we get

<

3

{b) Since it is g_-iven that =(¢) is absolutely integrable, we can conclude that the ROC of
X(s) must include the Jw-axis. Therefore, the first choice of 2(t) given above is the

2(t) = Zetu(e) + %e"‘u(t}.

one we want.
() We need to ficst find a H(s) such that H(s)Y (s) = X(a). Clearly,
_ A8} s+l
H(s) = o =i

The pole-zero plot for H{(s) is as shown in Figure $9.47. Since h(t) is gi
4T, given to be stable,
the ROC of H(s) has to be Re {s} < 1. The partial fraction expansion of H (s} is

B =gt
-1

Therefore,
hit) = 8(t) = 2e™tu(—¢)

Also, ¥ (s) hu the ROC Refs) > -2 Therefore, X(s) must Lave the ROC -2 <
:.'Ze{.i} < 1 (the intersection of the ROCs of ¥{s) and H(s). From this we get (a8 shown
in part (a})

x(t) = ;e‘u(-—!] + éc'z‘u(!)‘

Verification: Now,

MO = [6(8) - 2e~u(=0)] o [e=Hu(e))
= e Hy() - 2-/-”:""'3"':1{!' - t)dr
A r
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Figure 59.48

For t > 0, the integral in the above equation is
et / S evar 1
e = —f .
A 3

For ¢ < 0, the integral in the above equation is
- 1
t -3r x
dr = ze'.
€ /o € T =3¢

h(t) e y(t) = - ;:'u{—t) + %t"‘u(t} = z(t).

Therefore,

§.48. (a) Hi(s) = 1/H(s).
(b) From the above relationship it is clear that the poles of the inverse system will be the
zeros of original system. Also, the zeros of the inverse system will be the poles of the
original system. Therefore, the pole-zero plot for Hy(s) is as sketched in Figure 59.48.

9.49. If a system is causal and stable, then the poles of its transfer function must all be in the
left half of the s-plane. This is because the ROC of 2 causal system is to the right of the
right-most pole. For the ROC to contain the juw-axis, the right-most pole must be in the
left-half of the s-plane.

Now, if the inverse system is also causal and stable, then its poles must also all lie in the
left half of Lhe s-plane. But we know that the poles of the inverse system are the zeros of
the original system. Therefore, the zeros of the original system must also lie in the left-hall
of the s-plane.

9.50. (a) False. Counter-example: H(s) = 1/(s = 2),Re{s} < 2.

(b) True. If the system function has more poles than zeros, then h(t) does not have an
impulse at t = 0. Since we know that h(t) is the derivative of the step response, we
may conclude that the step resy has no discontinuities at ¢ = (1
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at 3 j, we know that the output of the system to the two exponentials has to be zero.
Hence, the response of the system to ¢ sin(t) has to he zero.

9.32. (a) Consider the signal ylt) = z(t = tg). Now,

¥{s) = f’ z(t — tp)e *dt.
Replacing { — tg by 7, we get

Y(s) = fw :[r]e""”’)d‘f

-0
= e‘"‘fQ z{r)e™ Tdr
-0
= e Mo X(s)
This obviously converges when X (s) converges because e~*% has no poles Therefore
the ROC of ¥ (s) is the same as the ROC of X(s).
(b) Consider the signal y(t) = e'z(t). Now,
o0
Yis) = f z(t)e’ete " dt
-1

fw z(tye -0t

X(s = %)

]

If X{s) converges in the range o < TRe{s} < b, then X(s ~ 5g) converges in the range
a+ sg < 5 < b+ so. This is the ROC of ¥Y(s).

(c) Consider the signal ylit) = z(at). Now,

Y(s) = fw z{at)e " dL

Replacing et by 7 and assuming that a > 1, we get
Y(s) = [llé‘nz)-/m° z(r)e " /3dr
= (1fa)X(s/a).
If & <0, then
Yis) = _(I;a}jwzm,-:{rmd,
-0
= —(1/a)X(s/a).
Therefore, i 5
Y(s) = X (2)-

a
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Figure 59.51

(c) False. Causality plays no part iu the argument of part (b).
(d) False. Counter-example: H(s) = (s — 1)/(s + 2}, Re{s} > =1

3.51. Sinee h(t) is real, its poles and zeros must occur in complex conjugate pairs. Therefore, the
known poles and zeros of H(s) are as shown in Figure 38.51. Since H(s) has exactly 2 zeros
at infinity, H(s) has at leas! two more unknown finite poles. In case H{(s) has more than
4 poles, then it will have a zero at some location for every additional pole. Furthermore,
sinee h(t) is causal and stable, all poles of H(s) must lie in the left half of the s-plane and
the ROC must include the jw-axis.

{a) True. Consider

olt) = hit)e™™ 55 G(s) = H(s +3).
The ROC of G(s) will be the ROC of H(s) shifted by 3 to the left. Cleacly this ROC
will still include the jw-axis. Therefore, g{t) has to be stable.

(b} lnsufficient information. As mentioned earlier, H(s) has some unknown poles. So we
do not know which the rightmost pole is in H(s). Therefore, we cannot determine what
its exact ROC is.

(c) True. Since H(s) is rational, H(s) may be expressed as a ratio of two polynomials in s.
Furthermore, since h(t) is real, the coefficients of these polynomials will be real. Now,

Y(s) _ Pls)
X(s) QM)

Here, P(s) and Q(s) are polynomials in 5. The differential equation relating =(t)
and y(t) is obtained by taking the inverse Laplace transform of ¥'(s)Q(s) = X(s)P(s).
Clearly, this differential equation has to have only real coefficients.

(d) False. We are given that H(s) has 2 zeros at s = co. Therefore, lim, 4o His} = 0.

(e) True. See the reasoning at the beginning of the problem

(f) Insufficient information. H(s) may have other zeros, Sce reasoning at the beginning of
the problem.

(g) False. We know that ¢*sin(t) = (1/27)@+30 — (1/25)el3=7, Both @) and pl3-dlt
are Eigen functions of the LTI system. Therefore, the response of the system to these
exponentials is H(3 + j)e@*?)" and H(3 — §)et3=t respectively. Since H(s) has zeros

H(s) =
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Il X{s) converges in the range a < Re{s} < f, then X(s/a) converges in the
range afa < s < ffc when a > 0. When a < 0, then X (s/a) converges in the range
Bfa < s < afa.

(d) Consider the signal y(t) = z(t) » &(t). Now,

Y(s)

o
f [z(t) » h(t)]e™*dt

j::f_::(r)hh — r)dre=tdt
.L:z{r) [ j: :h(: —r)e dll 3

Using the time-shifting property, we get

n

¥Y(s) = fwz{-!)h'(s}n“'dv

H(s}[“ z({r)e™dr
= H(s)X(s)

Clearly, ¥ (5) converges at least in the region where both X (s) and H{s) converge. lts
ROC may be larger depending on whether some of the poles of either H{s} or X (s} get
cancelled out by the zeros of X(s) or H(s), respectively.

9.53. (a) From the example worked out in the text we have
" c 1
€ = u(t) +— m—--m' Re{s} > a.

With & = 0, we get

2(0+) (;:-‘,) uft) <5 I:RT). Re{s) > 0.

(b) We may rewrite eq. (P9.53-1} as
z(t) = Z:“(DH (:%) .

Taking the Laplace transform of both sides of this equation and using the result of part

(a), we get
X(s) = Z‘—:ﬁ—‘ﬁ-’—}. (59.53-1)
A=
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(e) From the result of past (b), we have
sX(s) = 2O(0+) + 2N(O+) /s + -+

Therefore,
Jim sX(s) = 2(9(0+) = 2(0+).

(d) (1) Assuming that the ROC is s > -2, we get
2(t) = e~ Hu(t).
Therefore, z(0+) = 1. Now,
. ;i s
,I_I‘I!GIUJX(-U) = .qllﬂlom =1
(2) The partial fraction expansion of X(s) is

X(s) = (—%) -
Assuming that the ROC is s > =2, we get

z(t) = 2¢*u(t) — e ult).
Therefore, z{0+) = 1. Now,

s +a
; P o e, S [
-Ilm sx(s]_‘lm 1545

() Assuming that z("(0+) = 0 for n < N, €q.(59.53-1) may be written as

= 2" (0+
X =3 :,,(m )
n=N
Now,

N+l N+2
M X(s) = =Mo+) + I__;@_'_’_E_u,ﬂ sy

&
Therefore,

lim sV X(s) = M 0+).
o0
9.54. (a) We have ;
1 ﬂ"“x-( J -\..[ﬂ
= m— s)e .
=) ??"J'j;-,'m
Conjugating both sides, we get
1

i ot
)= —=— * ds.
£ i Jotyoe e

57

Pair 13 Using the shifting in the s-domain property on pair 11, we get
a+a

—at £
e~ ens(wgt)u(t) +— —_(-'+ T

Refs} > -a.
Pair 14:Using the shifting in the s-domain property on pair 12, we get
S & g =
e~ ¥ sinfwyt)u(t) +— m. Rels) > -a
Pair 15:From pair 1 of Table 9.2, we have

uo(t) = 8(t) <41, Alls.

44T,

Using the

iation in time-domain property on this signal, we get
[
wi(t) = %E_) Lis,  Alls
Continuing along these lines and differentiating 4(t) n times, we get
d"d(t
unlt) = ~d—£f‘—’ Losn Al
Pair 16:From pair 2 of Table 9.2, we have
ult) < -i-. Re{s} >0
By applying the convolution property, we get
o
—2(f) = ult) » u(t) = .
uoalt) = u(®) v ul)) 5 5, Rels) >
Continuing along these lines and convolving u(t) with itsell n times, we get

wnl®) 55 5, Refs}>0.

[mlz(l)lc'“'dt < oo,

we need to prove that [ X(sg)| = 0, where sy = ag + jwy. We have
oo
1X (30} = [f :(i)e"“‘dli =
—oo
Using eq. (P9.56-1), we get
Xl 5 [ lattermteita
piss
[ iateyieeiar

-0

9.56. Given that

o
j a(t)e otg~Ielgy
-0

1A

oo

WA
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For a real sigoal z{t) = 2*(t). Therefore,

1 == :
z(t) = —— X*(s)e* tds.
2 a4joe

Replacing s* by p and noting that dp = —ds for a fixed 7, we get

L[ x ot
2nj oo F
L[ e gr)ert
o *(p*)ePd
7 Jo—soo (p*)e"dp
Therefore, L{z(t)} = X*(s*). This implies that X(s) = X*(s").
(b) Let X(s) have a zero at 5 = s;. Then X(#) = 0. From the result of part (a), we know
that X*(sj) = 0. This implies that X(s}) = 0, which in turn implies that X (s} has
a zero at s]. The same approach may be used to show that poles occur in conjugate
pairs.

I

z(t)

1

9.55Pair 10:From pair 1 of Table 9.2, we have
5t) 551, Al s,
Using the time-shifting property, we get
(t-T) 56T, Alls.

Pair 11;From pair 6 of Table 9.2, we have

oly(t) ¢ ——.  Rels) >0 (89.55-1)
§ = Jug

and

eIvnty(e) o5y i) Re{s} > 0. (59.55-2)
Note that cos{wgt) = (1/2)e/*0¢ 4 (1/2)e=7%¢. Now using egs. ($9.55-1) and (59.55-2}
with the linearity property, we get

c 1 1 1 1 &
et o R R
The ROC will be Re{s} > 0.
Pair 12:Note that sin{wgt) = (1/27)e% = (1/25)e~ 7t Now using eqs. (59.55-1) and (58.55-
2) with the linearity property, we get
1

. 5 1 1 1 wn
u(l) =+ = - —— - = —.
sin{wot)u(t) % S-Ju’o] 2}[,4_3%] T

The ROC will be Re{s} > 0.
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Plousibility of eq.(P9.56-1): Integration is akin to the addition of an infinite number of
complex numbers, For any two complex numbers A and B, we know that |4+ B| < |A|+|B|.
Using this, we may argue that the same should hold for a i sum of compl b

or the integration of a complex function.

9.57. Since =(t) has an impulse at ¢ = 0, the numerator polynomial of X(s) must be of the
same /larger degree than the denominator polynomial of X (s). This implies that X (s) has
al least 4 zeros.

9.58. Since g(t) = Re{h(t)}. )

_ i)+ h7(t
glt) = ————

Using the linearity and conjugation properties, we get

o) = AT ),

The ROC of G(s) will be at least the intersection of the ROCs of H(s) and H*(s"). This
means that the ROC of G(s) will be at least as much as the ROC of H{s). Therelore, if
H(s) is causal and stable, then G(s) also has to be causal and stable.

9.50. (a) Let y(t) = =(t = 1}. Then,
= ‘-, - —lld 3
Yis)=eT"X(s)+e E:(t)c t

(b) Let y(t) = z{t + 1), Then,

1
P(s) = e X(s) - ='f a(t)e"dr.
(']
{3
(c) Let y(t) = f‘w:(f)rﬁ. Then,

X(s) + f ® a(ertat

-]
L]

Vis) =
(d) Let y(t) = d*z(t)/dt’. Then,
Yis) = 2 X(s) - s*2(07) — s2'(07) = ="(07).

9.60. (a) We have
h(t) = adlt = T) + a*(t — 3T).
From Tables 8.1 and 9.2,

H(!) o m--lT & 036—311". All 5.
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(b} To determine the zeros of H (1), note that we require
ae=T 4 oPe 3T = ae~T(1 + a?e 27| = 0.

Therefore, at the zeros
1+a%e T =0 = ae'T=4%j
This implies that the zeros occur al

1 2k
s=plogax [%1?— , k=0,41,£2 .
At the poles, H(s) = ov. Therefore, at the poles we require that
aeT +ate T =ae (L +a%e 27| = co.

This is not possible at any finite 5. Therefore, there are no poles in the finite -plane.

{c) The pole-zero plu} is as shown in Figure 59.60.
-,

? 7 1
T ant | Htgwn
w i ) i
& 4 Mt
| . S = l"l;f ey +t-J
-3 - in
A e e EE| % E
T 1
4
b F-aufr
Figure 59.60

(d) From the figure it is clear that H{jw) will be periodic and will be as shown in Figure
59.60.

9.61. (a) If we want ¢zz(t) to be the output of the system when z(t) is the input, then
durtt) = [ atrihe =)
]

Also we are given that

dutt = [ ® a(r)elt + T)dr.

Therefore,

zit+r)=hit—-1) = hit) = z(-t}.
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But s
e ¢ 1
T““’ — W s> -1

Therefore, [ ;

Xt o g F

N dam u(t) «—r ErT §» -1,

It follows that

1 U ¢ (s=1/2)"
e""m T uft) +=— -—-—'-—{’ T s> —1/2.

Therefore, ( )
s—1/2)"
@.(s) = W‘ s> =1/2.
(¢} Choose i
Hils) = PFeYs
and
(s -1/2)

Ha(s) = m{ﬁ]
9.63. (a) We have 5
H(s)= FrayiL

The pole-zero plot for H(s) is as shown in the Figure $9.63. Using the geometric
hod for evaluating the magnitude of the Fourier transform, we may sketch 1A {(jw)}

as shown in Figure 59.63.

IHjw)

]a(,' )

Figure 59.63

Also, 3
Gs) = H(}fs) = =5

The pole-zero plot for G(s) is as shown in the Fi
for evaluating the magnitude of the Fourier transform, we may sketch

in Figure 89.63.
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igure 59.63. Using the geometiw jnethod
|G (jul| as shown

Figure 59.61

(b) Since ¢-:(t) = z(t) ¢ 2(—1),
Pyz(s) = X(s)X(~5)

and
Syp(fu) = X (Gw) X (=jw).
If z(t) is real, X*(juw) = X(—jw) and
Breliw) = | X Gw)*.
(c) 1f X(s) has a pole-zero pattern as shown in Figure P9.61, then X (—s) has a pole-zero
pattern as shown in Figure S9.61. The corresponding ROC is also shown m Figure

30.61.
Neow, ®,(s) will include the poles of both X(s) and X(—s). Furthermore, its ROC
will be the intersection of the ROCa of X (s) and X(=s). (See Figure 89.61)

49.62. (a) We have
Lo(t) =e'e™' = 1,

Lift) = e:d_“%;_]l =effet —te™ =1t
e dP(tfe")
La(t) T
= ;-:IZG"‘ —2te™" — 2t~ + 1%

1
= 1= ey
2t+2f

(b) We have
dnlt) = ﬁe'ﬂ%um
l‘leq-,d"[f"e"u(s) + t"e"u{-c}]"(t)

n! ! dt"
A _1_ d"[t"e™ ult)]
. rl!ul!lﬂ dn :
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(b) LCCDE associated with H(s):
Consider Y(s) .
5
) = X(s) s+1/2
Cross-multiplying and taking the ioverse Laplace transform, we obtain

0 | Jute) = =00,

LCCDE associated with G(s):

Consider Y(s) 28
k]
O6) =X * 57
Cross-multiplying and taking the inverse Laplace transform, we obtain

dz(t)
dt
(c) Taking the Laplace transform of eq.(P8.63-1), we obtain

% + 2y(t) =2

~ N
2 ety (s) = I bes* X (s).
k=0

k=0
Therefore,
N
e
L L) R R
a0
Zn,,a"
k=0
Now
N N
Eb*.l i zb;,s” =
Gls) = H(1/s) = 552 =
zau'* Eﬂn&” £
k=0 k=0
(d) Now from the previous part, we have
N
Y( bu""'
o Yl8) _ x=0
G(s) X@) - .
E“* Nk
k=0
Cross-multiplying and taking the inverse Laplace transform, we obtain
N Al N
d¥-Ey(t) d¥*z(t)
Z"‘: ANE Zb*' PTG
k=0

k=0
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9.64. For the circuit, we know that the differential equation relating the input z(t) and autput

ult] is
LCJ;‘:E) + Rc% +y(t) = =(0).
Taking the Laplace transform of both sides and simplifying, we get
Hig) = 200 1/LC

X(s) - &+ (R/L)s + (1/LC)’
(&) Note that the poles of H(s) arc at

-RC + VRICT = 4LC
—_—

If R, L, and € are always positive, then the poles are always in the left half of the s
plane {because the real part of the numerator of the above equation is always ol
Sinee the system is causal, the ROC is to the right of the right-most pole.  Therdone
the ROC includes the ju-axis and the system is stable.

(b} From H(s} we obtain
l —
L3C%s% + (RLC? - RLC?)sY + (2LC — R¥C¥)s? + (RC - RCix 4 1
1
L3C3s% + (2LC - Eicﬁ}ai +17

For this to represent & seeand order Butterworth filter, we require

H{s)H(-s) =

L

ALC-RC'=0 = R-z‘r‘b.
9.65. (a) Thedifferential equation relating vi(t) and v,(t) may be obtamed by putting 511} = ()
and y(t) = v,(t) in the differential equation given in the previous problem. Therefore,

d’ug(t)
de?

d'"u(l}

LC—=— + RC

+ wolt) = wilt)
or
Pug(t) | Rduolt) 1 1
= Yt a T '-'-(‘J outt)
(b) Taking the unilateral Laplace transform of the above differential equation, we get
$V(8) = 5Vel07) = V4 (07) + FoVels) = Vul0™) # 7 Vals) = 7V )
159.65--1)
Now, since v,(t) = e Puft),

Vi(s) = Refs} > -3

1
s+3
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Chapter 10 Answers
10.1. {a) The given summation may be written as
s ] ] "
= f et =pm
3 (z' ) e
nm=1
by replacing z with re/*. If r < }, then jr' > 1 and the function within the
summation grows towards infinily with increasing n. Also, the summation does not
converge. But if r > i then the summation converges.
(b) The given summation may be writien as
35 @t
l|=|2
by replacing = with r&’. If r > (1/2), then 2r > 1 and the function within the
summation grows towards infinity with increasing n. Also, the summation does not
converge. Bul if r < §, then the summation converges.
{e) The summation may be writlen as

ir'" + (—r]"‘e_m
2
LE

by replacing = with re?. 1[r > 1, then the function inside the summation grows
towards infinity with increasing n. Also, the summation does not converge But if
r < 1, then the summation converges.

{d} The summation may be written as

o
Z{ P cos(an/fale R 4 Y (ér)'“mimﬂ}e""‘
A=0 As-ao

by replacing z with re?”. The first summation converges for r > . The second
summation converges for r < 2. Therefore, the sum of these two summations converges
for f<r <2

10.2, Using eg. (10.3),

Xi(n) = n-Z-u( ) ufn =3z
- }Z:(%)"“"
z [125]2(;
= [125 i_—# Lz]}%
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Substituting this aloug with the values of R, L, and C in eq. (59.65-1), we get

_ At +5547)
YlS) = Gw (s + 2)(s +3)°

The partial fraction expansion of V,(s) is
2 1
LU +1_s+2+s+3‘
Taking the inverse Laplace transform, we get

volt) = Fe~"uft) = 26 Hu(e) + e Mult).

9.66. (a) The differential equation relating 5(¢) and vs is

dit)

— + ya [l) = —u{l)

Also, i(0°) = v /R.
(b) Taking the unilateral Laplace transform of the above differential equation, we get

a1(8) = 4(07) + T 1(s) =

(i) This corresponds to the zero state response of the circuit. Here,

1 1]
(.+1} o ey o]

i(t) = 2u(t) — 2¢~*u(t).
(ii) This corresponds to the zero state response of the circuit. Here, (07 ) = 4 and

I(s) =

Therefore,

Ho)= oy

‘Therefore,
() = de~tu(t).

(iii) This corresponds to the total response of the system. It will be the sum of the
results of the previous two parts.

i) = 2ule) + 2 u(t).
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10.3. By using eg. (9.3), we can easily show that

—_—g=ne
a"u[=n = ny) S

e || < |ex|.
We then obtain AR
_z- s
X(z) = l+z"+m’ 1< |z| < |al.
Therefore, |a| has to be 2. ny can take on any value,
10.4. Using eq. (9.3), we have
0
1
X@ = 3 () cos(Im)a
= “"12) Z { }ue;mf( -4 (1/2) E { ]n -yenfd g —n
- umﬁ( e (1723 () e
n=0
- ) 1 1
= {l,f?,] TFez T i‘]'{2'}1 - Jerfiz’ ik 3

The poles are at z = %e"” and z = g-e"i’-'"'.

10.5. (a) The given =-transform may be written as

X(2) = e "
e 7o e

Clearly, X(z) has a zero at = = §. Since in X(z) the order of the denominator poly-
nomial exceeds the order of the numerator polynomial by 1, X(z) has a zero at oo,
Therefore, X(z) has one zero in the finite z-plane and one zero at infinity.

(b) The given z-transform may be written as

(z—-1){z-2)

G-3)E-4)
Clearly, X(z) has zeros at = = 1 and £ = 2. Since in X(z), the orders of the numerator
and denominator polynomials are identical, X (z) has no zeros at infinity. Therefore,
X(z) has two zeros in the finite z-plaone and no zeros at infinity.

(e) The given z-transform may be written as

X(=)=

P T | S
z(s - ;I](; + ;)

Clearly, X(z) bas a zero at = = 1. Since in X(z) the order of the denominator poly-
nomial exceeds the order of the numerator polynomial by 2, X(z) has two zeros at oo.
Therefore, X (z) has one zero in the finite z-plane and two zeros at infinity.
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