9.64. For the circuit, we know that the differential equation relating the input z(t) and autput

ult] is
LCJ;‘:E) + Rc% +y(t) = =(0).
Taking the Laplace transform of both sides and simplifying, we get
Hig) = 200 1/LC

X(s) - &+ (R/L)s + (1/LC)’
(&) Note that the poles of H(s) arc at

-RC + VRICT = 4LC
—_—

If R, L, and € are always positive, then the poles are always in the left half of the s
plane {because the real part of the numerator of the above equation is always ol
Sinee the system is causal, the ROC is to the right of the right-most pole.  Therdone
the ROC includes the ju-axis and the system is stable.

(b} From H(s} we obtain
l —
L3C%s% + (RLC? - RLC?)sY + (2LC — R¥C¥)s? + (RC - RCix 4 1
1
L3C3s% + (2LC - Eicﬁ}ai +17

For this to represent & seeand order Butterworth filter, we require

H{s)H(-s) =

L

ALC-RC'=0 = R-z‘r‘b.
9.65. (a) Thedifferential equation relating vi(t) and v,(t) may be obtamed by putting 511} = ()
and y(t) = v,(t) in the differential equation given in the previous problem. Therefore,

d’ug(t)
de?

d'"u(l}

LC—=— + RC

+ wolt) = wilt)
or
Pug(t) | Rduolt) 1 1
= Yt a T '-'-(‘J outt)
(b) Taking the unilateral Laplace transform of the above differential equation, we get
$V(8) = 5Vel07) = V4 (07) + FoVels) = Vul0™) # 7 Vals) = 7V )
159.65--1)
Now, since v,(t) = e Puft),

Vi(s) = Refs} > -3

1
s+3
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Chapter 10 Answers
10.1. {a) The given summation may be written as
s ] ] "
= f et =pm
3 (z' ) e
nm=1
by replacing z with re/*. If r < }, then jr' > 1 and the function within the
summation grows towards infinily with increasing n. Also, the summation does not
converge. But if r > i then the summation converges.
(b) The given summation may be writien as
35 @t
l|=|2
by replacing = with r&’. If r > (1/2), then 2r > 1 and the function within the
summation grows towards infinity with increasing n. Also, the summation does not
converge. Bul if r < §, then the summation converges.
{e) The summation may be writlen as

ir'" + (—r]"‘e_m
2
LE

by replacing = with re?. 1[r > 1, then the function inside the summation grows
towards infinity with increasing n. Also, the summation does not converge But if
r < 1, then the summation converges.

{d} The summation may be written as

o
Z{ P cos(an/fale R 4 Y (ér)'“mimﬂ}e""‘
A=0 As-ao

by replacing z with re?”. The first summation converges for r > . The second
summation converges for r < 2. Therefore, the sum of these two summations converges
for f<r <2

10.2, Using eg. (10.3),

Xi(n) = n-Z-u( ) ufn =3z
- }Z:(%)"“"
z [125]2(;
= [125 i_—# Lz]}%
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Substituting this aloug with the values of R, L, and C in eq. (59.65-1), we get

_ At +5547)
YlS) = Gw (s + 2)(s +3)°

The partial fraction expansion of V,(s) is
2 1
LU +1_s+2+s+3‘
Taking the inverse Laplace transform, we get

volt) = Fe~"uft) = 26 Hu(e) + e Mult).

9.66. (a) The differential equation relating 5(¢) and vs is

dit)

— + ya [l) = —u{l)

Also, i(0°) = v /R.
(b) Taking the unilateral Laplace transform of the above differential equation, we get

a1(8) = 4(07) + T 1(s) =

(i) This corresponds to the zero state response of the circuit. Here,

1 1]
(.+1} o ey o]

i(t) = 2u(t) — 2¢~*u(t).
(ii) This corresponds to the zero state response of the circuit. Here, (07 ) = 4 and

I(s) =

Therefore,

Ho)= oy

‘Therefore,
() = de~tu(t).

(iii) This corresponds to the total response of the system. It will be the sum of the
results of the previous two parts.

i) = 2ule) + 2 u(t).
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10.3. By using eg. (9.3), we can easily show that

—_—g=ne
a"u[=n = ny) S

e || < |ex|.
We then obtain AR
_z- s
X(z) = l+z"+m’ 1< |z| < |al.
Therefore, |a| has to be 2. ny can take on any value,
10.4. Using eq. (9.3), we have
0
1
X@ = 3 () cos(Im)a
= “"12) Z { }ue;mf( -4 (1/2) E { ]n -yenfd g —n
- umﬁ( e (1723 () e
n=0
- ) 1 1
= {l,f?,] TFez T i‘]'{2'}1 - Jerfiz’ ik 3

The poles are at z = %e"” and z = g-e"i’-'"'.

10.5. (a) The given =-transform may be written as

X(2) = e "
e 7o e

Clearly, X(z) has a zero at = = §. Since in X(z) the order of the denominator poly-
nomial exceeds the order of the numerator polynomial by 1, X(z) has a zero at oo,
Therefore, X(z) has one zero in the finite z-plane and one zero at infinity.

(b) The given z-transform may be written as

(z—-1){z-2)

G-3)E-4)
Clearly, X(z) has zeros at = = 1 and £ = 2. Since in X(z), the orders of the numerator
and denominator polynomials are identical, X (z) has no zeros at infinity. Therefore,
X(z) has two zeros in the finite z-plaone and no zeros at infinity.

(e) The given z-transform may be written as

X(=)=

P T | S
z(s - ;I](; + ;)

Clearly, X(z) bas a zero at = = 1. Since in X(z) the order of the denominator poly-
nomial exceeds the order of the numerator polynomial by 2, X(z) has two zeros at oo.
Therefore, X (z) has one zero in the finite z-plane and two zeros at infinity.
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10.6. (a) No. From praperty 3 in Section 10.2, we know that for a finite-length signal. the
ROC is the entire z-plage. Therefore, there can be no poles in the finite z-plane for a
fnite-length sigual. Clearly, in this problem this is not the case.

(b) No. Since the signal is absolutely summable, the ROC must include the unit circle.
Also, since the signal has a pole at z = 1/2, the ROC can never be of the form
0 < |z] < rg, From property 5 in Section 10.2, we know that the signal cannot be left
sided.

(e) Yes. Since the signal is absolutely summable, the ROC must include the unit circle
Since it is given that the signal has a pole at z = 1/2, a valid ROC for this signal would
be [z] = 1/2. From property 4 in Section 10.2 we know that this would correspond to
@ right-sided signal.

(d) Yes. Since the signal is absolutely summable, the ROC must include the unit circle,
Clearly, we can define an ROC which is a ring in the z-plane and includes the unit
circle. From property 6 in Section 10.2, we know we ma conclude that the signal could
ke two sided.

10.7. We may find different signals with the given z-transform by choosing different regions of

convergence. The poles of the s-transform are

LT i ol = 8
= .2.7‘ 1 2)» 2 2 4—‘-

Based on these pole locations, we may choose from the following regions of convergence:

(i) O<lzf <}

(i) $<fzgj<i

iii) |2] > 3

Therefore, we may have 3 different signals with the given z-transform.

10.8, 1If

z[n] 25 X(2), R,

then from Table 10.1 we have

G)":[rq Zxun, lr

o -

n
( é) zln) 2+ X(82), éﬁ.
Since R includes the unit circle, and X(z) has a pole at z = 1/2, we may conchude thar B
is definitely outside the circle with radius 1/2. The only question we now have to answer is
whether R extends to infinity outside this circle of radius 1/2. Since § R does not include
the unit circle, it is clear that this is oot the case. Therefore, R is a ring in the z-plane
From property 6 in Section 10.2 we know that z(n] must be a two-sided signal.

369

- Since the ROC includes the entire z-plane, we know that the signal must be finite length,
From the finite-sum formula, we have

D.1

11024 - 0] E oy
[ -5 )

— 3z
Comparing this with the definition of the z-transform in eq. (10.3), we obtain

e { ()" 0<nso
0, otherwise

12. The pole-zero plots for each of the three z-transforms is as shown in Figure $10.12.

Tim

Figure 510.12

(a) From Section 10.4, we know that the magnitude of the Fourier transform may be

expressed as i
.

e = Length of v; '
where 0] is as shown in the figure above. Clearly, for small values of w (w near zeta).
the right-hand side of the above equation is small. But as w approaches m. the right-
hand side of the above equation becomes large. Therefore, H(e?~) is approximately
highpass.
(b) From Section 10.4, we know that the magnitude of the Fourier transform may be
expressed as R . hof )
agth of vj J(Length of
—_— b
G- (Tength of 63)?

where 1], 4, and @ are as shown in the figure above. Clearly, for small values of
W (w near zero), the numerator of the right-hand side of the above equation i much
larger than the denominator. Therefore, Hy(e™) is large near w = 0. But as w
approaches =, the denominator of the right-hand side of the above equation is r_nnch
larger than the numerator. Therefore, Hy(e?) is small near w = n. Therefore, Ha(e'~)

is approximately lowpass,

3

10.8. Using partial-fraction expansion,

2/9 /9
X(z) = 'I‘TJL—__T-F-]‘T;T_-I—. lz] > 2.

Taking the inverse #-transform,
7
zln] = gu{n] +5(=9"ufn].

10.10. We use the approach developed in Example 10,11 to solve this problem,
(a) Since |2] > §, we may use long division to obtain the power-series expansion of X
as shown below,
- <1{1 - 5
13" ) I+ 371 (14 g, e
|‘+_3L*—!
e i
Zo-l o,
I
S8+ 2y
L.t o2 3
?¥ +353

Comparing X(z) with the definition of the z.transform in 2q. (10.3}, we see that
2 2
] 1, = = =—,
M=t ah)=g a2

(b) Since |2| < : we may use long division to obtain the power-series expansion of X(=
as shown below,

‘%z_‘&""') 37+ (3-¢y s
¢ 42
-2

-2 . QE-I
621

1
Comparing X(z) with the definiti

of the z-transform in eq. (10.3), we see that
0] =3, z[-1]=-g, z[-2) =18.
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(¢) From Section 10.4. we know that the magnitude of the Fourier transform may be
expressed as
(Length of ;)2
(Length of v3){Length of i)'
where ], 4], and & are as shown in the figure above, Clearly, for small values of
@ {w near rero), and for values of w near # the numerator of the right-hand side of
the above equation is almost the same as the denominator. But when || is mear

|Hyer)| =

approximately bandpass.

10.13. (a) The signal g[n} is
oln) = 8fn) - dfn — 6],
Using the definition of the z-transform in eq. (10.3), we obtain

Gll=1-2"%_ |z>0

(b) From Table 10.1, we have

1
1-z-1

z[n] = f: alk] PN X(z) =

k=ano

Glz), At least|z) > 1.

Therefore,
13
—. >0
The ROC is |z| > 0 because 2[n] is a finite-length signal,

X(z) = ]E__L

10.14. (a) We know that z[n] » z[n] will be triangular signal whose first non-zero value occirs at
n = 0. Furthermore, we also know that z[n] = z[rn — ng] has its first nonzern value at
7 = ny. Therefore, ng = 2.
(b) From Problem 10.13 we have

1= z-¢
X(e) = 1y __:_l, Jz] > 0.
Using the shift property,
e ]
:[ﬂ«-?]hz-fz"il—_%. Jz2] >0
Using the convolution property,
— -6 2
gln] = zfn] s 2[n — 1] &, ;-2 ({—_%) v zl>0

Since
lim G(z) = 0 = g[0),

G(z) does satisfy the initial value theorem,
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10.15. Taking the z-transform of y[n], we have

Y(:) = .1.:-.:?, > g

Now from Table 10.1, we have

wln] = yglnl = { gE"L :: : g: & Yi{z) = Yz, 2> %

‘Therefore,
1 1
wtl =1, wmil]=0, 2= 5 w3 =0 w{d= Eir

it = 3 [(3) s+ - (3) -

If we now choase z{n] to be & [(4)" u[n]], then

This may be written as

Yils) = V() = (12X () + X(-2), el > %

Furthermere, since X{z) has only one pole and one zero, this choice of z[n] satisfies both
the given conditions.

We may also choose z{n] to be § [(=1)* (})" u[n]]. This would still satisfy both given
eonditions.

10.16. For a system to be both causal and stable, the corresponding z-transform must not have
any poles outside the unit circle.
(a) The given z-transform has a pole at infinity. Therefore, it is not causal
(b) The poles of this z-transform are at z = j and z = —§. Therefore, it is causal
(¢) This z-transform has a pole at ~4. Therefore, it is not causal,
10.17. (a) Since lim;ace = 1, H(z) has no poles at infinity. Furthermore, since hin] is given to be
right-sided, h[n] has to be causal.

(b) Since hln] is causal, the tor and d inator poly ials of H{z) have the
same order. Since H(z) is given to have two zeros, we may conclude that it also bas
rwo poles.

Since h{n] is real, the poles must occur in conjugate pairs. Also, it is given that one
of the poles lies on the circle defined by |2| = 3. Therefore, the other pole also lies on
the same circle.

Clearly, the ROC for F(z) will be of the form |2] > §. and will include the unit
circle. Therefore, we may conclude that the system is stable.
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10.20. Applying the unilateral z-transform to the given difference equation, we have
2 Y(2) + yl=1] + 2¥(z) = X{a).
(a) For the zero-input response, assume that z[n] = 0. Since we are given that y=1=2
-1
-1 i s e —
21V +yl-1) +20(2) = 0= Y2) = T
Taking the inverse unilateral z-transform,
e
ol == (-5) uinl

(b) For the zero-state response, set y[— 1] = 0. Also, we have

(=) = UZ(/2)ulr]) = 1—_—;—. o> 5

o) = (1—_3‘—5—,) (e—i—,) .

We use partial fraction expansion followed by the inverse unilateral z-transform to

obtain i e L/1N"
=2 () e 1 (3) o

(c) The total response is the sum of the zero-state and zerc-input responses, This is

oot = -3 (-3) i+ 5 (3) uin:

10.21. The pole-zero plots are all shown in Figure S10.21.
(a) For zfn] = §[n + 5],

Therefore,

X{z) =2 Alz
The Fouricr transform exists because the ROC includes the unit circle.

(b) For z|n] = §[n — 5],
X(z)=z"%  All z except 0.

The Fourier transform exists because the ROC includes the unit circle.
(¢) For z[n] = (-=1)"u[n},

oo

X(z) = Z:[n}z“‘

n=—o

— Z(_l}nz-n
n=0
= 1/(1+=7"), |d>1

“The Fourier transform does not exist because the ROC does not include the unit circle,
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10.18. {a) Using the analysis of Exampls 10.28, we may show that
— B! -2

H(z) = 1—-6:z"" 4+ 82 ;

1= §1—2+ ;:—2

Since H(z) = Y (z)/X(z), we may write
Y - grl + %ﬁf] = X(2)1 - 627 + 8277,
Taking the inverse z-transform we obtain
2 1
yln) = iy[“ =1)+ Ey[n -2} = z[n] — 6zfn — 1] + Bz[n - 2].

{b) H(z) has only two poles. These are both at = = }. Since the system is causal, the
ROC of H{z) will be of the form |z| > 4. Since the ROC includes the umi circle, the
system is stahle.

10.19. (a) The unilateral z-transform is

Xiz) = E(:—)"u[n-l-ﬁ]:"‘

n=0

- 1o, -n
= Z(;)z

n=0
N S
1-(1/d)z-V"
(b) The unilateral z-transform is

X(z) = i(a[n + 3] + d[n] + 2*[=n])z7"

n=0

o0
= 3 (0 +d[n] + d[n])s 7"
n=l

= 2, Alz

The unilateral z-transform is
2 = T
n=0

= YT

n=0

1 1
= =umee Wz
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{d) For z[n| = (1/2)"*'ujn + 3],

X(z) = Ez[n]z""

= Yt

- Z(Uﬁn-ﬁz-mﬂ

n=t
= 42/(1-(1/2)z7"), sl > 1/2
The Fourier transform exists because the ROC includes the unit circle.
(e) For z|n] = (=1/3)"u[-n =2},

Ll

X = Y e

n==oo

—2
= z (-1fa=""

n=—os

= Z(-]ﬂi}'":"

= z[-1}’3)_"_:$"+2

n=0
= 0:2/(1+32), | <1/3
= 3z/(1+ /37N, ll<1/3

The Fourier transform does not exist because the ROC does not include the unit circle.
(f) For z{n] = (1/4)"u[-n + 3],

X(z) = i:!n}z""

3
= 3 A
n=—00
Ll

= 3 (A
n=-3
=5 Z(”q-nm\:n-.\
n=l
= (/64)z77 /(1 =42), |z <1/4
= (11674 /(1 = (1/4)z™"), | < 1/4
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The Fourier transform does not exist because the ROC does not include the unit cirele.
(g) Consider x,[n] = 2"u[-n),

)

Xifz) = Zx;{n]z"‘

LES

o
s Z (2}"1_"
A=

- Z(z)» L

n=0
= Y -(1/2)2), |z <2
= -27Y(1-2:7"), <2

Consider za[n] = (1/4)"uln - 1),

Xa(z) = Z z3[n)z~"

= S (jan
na=|

- Z“/‘)"H"-“-’

n=)

= -, e s 1y

The z-transform of the overall sequence z[n] = z;ln] + zafn] is

2. 270 1
I—_(—U-EZTI-, (1/4) < |z] < 2.

2=}
G-zt

The Fourier transform exists because the ROC includes the unit circle
(h) Consider z[n] = (1/3)"~2ufn — 2].

X(z) = ¥ zjnje

n=-00

X(t)= =

00
e z(ln}n—iz—n

nm?

o0
= Y-t
n=0
YO - (132N, 2> 173

The Fourier transform exists because the ROC includes the unit circle
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Now
A2l o Es s > (72
and
(@ ul=n - 1) 25 ‘171;7- 2l <2
Therefare,
X(z) = "Tilmz——- = 1-:%_[ (1/2) < 2] < 2.

Note that z[n] = nz,[n]. Therefore,

G2t 2
VAP R T

The ROC is (1/2) < |2| < 2. Therefore, the Fourier transform exists.

X(2) = ~a3 Xi(e) =

(c) Write z|n] as

z[n] = n(1/2)"u[n) ~ n2"u[-n — 1] = nzy[n) = nzs(n]

where 1
z1fn] = (1/2)%ufn) +Zs X, (2) = Tme H e
and 5 1
zo[n] = (2)"ul-n - 1] «£5 Xo(2) = e |z < 2.
Using the differentiation property, we get
(1/2):! 25~

d d
Heh S =sm MG ¢ g Xala) m IR (Vs e P

The ROCis (1/2) < |2/ < 2. Therefore, the Fourier transform exists.

(d) The sequence may be written as

edli2nnfE)ela/d)] o o= slt2nn 6) 4 (x/4)] ;
zn] = 4" s uj=n =~ 1],
Now,
- z ™M 1
AHEO Nl on 1) 2y S <4
and g !
n = 5[{2en/8)4{n/4) z ¢
POy [ = 1) T3 Toaemm e <k
Therefore,
et 1 e~Im/e 1 /
= 4
X(z) PRSP + T Teaeoms 1 |21

The ROC is |2| < 4. Therefore, the Fourier transform exists.
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Figure §10.21

10.22. (a) Using the s-transform analysis equation,

X(z) = (11'2]"2‘+{l,’2)""z“+(1/2)"=7+(1{?]":'-gl,)‘?l“.-“'

O (12277 4 (1/2)3 4 (1905
This may be expressed as

X(z) = (1/2)~*24 [1_‘(}/_3’1’_']_

1-(1/2)z 1

This has four zeros at z = 0 and 8 more zeros distributed on a circle of radius 1/2, T

ROC is the entire = plane. (Although from an pection of the

it seems like there is a pole at 1/2, nate that there is also a zero at if? whic

with this pole.} Since the ROC includes the unit eirele, the Fourier transform exises

(b) Consider the sequence #1|n] = (1/2)"], This may be written as
Ziln] = (1/2)*ufn] + 2*u(—p - 1},
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10.23. (1) The partial frartion expansion of the given X(z) is

=12 3/2
e = hdey

Sinee the ROC is lz] = 1/2,

zin] = —% (%)“u[n] + ; (—%)nu[n].

Performing long-division in order to get a right-sided sequence, we obtain
= | 1 1 1l _.
x:=l— i —g~2_ 1 -3 —=t S .5 s
(z) E e Sy 6 Tl ;
This may be rewritten as

3 1 1 1
X = [l Vg~ _2.-3,_ . .
(=) 2[ 32 +qz 3+ i
1 1 1 1
i | B T Sl PSP L SRS S
EI 37 +‘2 rEgre I

Therefore,
| B % 3 1\"
z[n] = == (5) ufn] + 2 (— i) ufn].

(i) The partial fraction expansion of the given Xiz)is

=1/2 3/2
“‘“"m‘:*rﬁ:ﬂ'

yl
Since the ROC is |2] < 1/2,

() = % (%Jnn[—n— 1 - g (—%)nuf-n )

Performing long-division in order to get a left-sided sequence, we obtain
X(2) =4z - 4: £ 167 — 162" 4 642% — 6ds6 4 ...
This may be rewritten as
Xiz) = ;{2:—d:’+s¢‘- 1624 + — .|

X
+ E[2=+4z:+8:’+!8=‘+---|.

zfn) = % (%)nu[—ﬂ -1 - g (-%)nu[-n ~1).

380

Therefore,



(111} The partial fraction expansion of the given X(z) is

3/2
X(z)=-2+ -1-’_—(1'!—2?".

Since the ROC is |2 > 1/2,
z[n] = —24[n] + ; (%)"u["‘]-

Performing long-division in order to get a right-sided sequence, we obtain
X BBy Sy
X(z)——§+zz + g7 +5¢ L R
This may be rewritten as
- 3yl 1
X(a) -'2+2[1+Ez etk ]
Therefore,
2[n] = —28(n] + 2 ‘)" in]
i 2\a) Mk

{iv) The partial fraction expansion of the given X(z) is

X(z)=-2+ ITfU_li;:T

Sinee the ROC is 2] < 1/2,
L]
2[n] = —28{n] - % (%) uf-n—1],
Performing long-division in order to get a lefi-sided sequence, we obtain
X(z) = —2 - 33 — 627 = 12:° — 24 —-
‘This may be rewritien as
X(z)=-2~- g{zzq-lz’ +82 + 162 + -]
Therefore,
zfn} = —28[n) = 3 }-)Hu[v—n - 1]
2\2
(v) We may similacly show that in this case,

z[n] = 2n(1/2)"un] - n(1/2)" uln + 11
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(b} X (z) may be rewritten as
2
X6 = ——
B==he-n

Using partial fraction expansion, we may rewrite this as
1 1
X(z) = 2% |-—+
z—3 &= 1

T i
= 2:{—;-_—%+2_1]

If z|n] is right-sided, then the ROC for this signal is |z| > 1. Using this fact we may
6nd the inverse z-transform of the term within square brackets above to he yin] =
—(1/2)"ufn] + u[n). Note that X (z) = 2zX(z). Therefore, z[n] = 2yfn+ 1] This gives

1 n+l
z[n] = -2 (E) uln+ 1] + 2uln + 1}.
Noting that z{—1]} = 0, we may rewrite this as
z|n) = - (;) ujn] + 2uln).
This is the answer that we obtained in part (a).
10.26. (a) From part (b) of the previous problem,
]
x
X —
el ey T
(b) From part (b} of the previous problem,

X(e) =2 [_ " ;] :

-3 z=-1

(€) If x[n] is left-sided, then the ROC for this signal is |2| < 1/2. Using this ke b, we may

find the inverse z-transform of the term within square brackets above Lo be yln| =
(1/2)"u[-n — 1] — uf-n — 1]. Note that X(z) = 22X(z). Therefore, zln] = 2yjn + 1.
This gives

1 n+l
r[n]=2(§) ul—n = 2] = 2u[-n - 2.
10.27. We perform long-division on X (z) so as Lo obtain 2 right-sided sequence. This gives us
X(z) =2 +47 + 52+ .
Therefore, comparing this with eq. (10.3) we get
z-3]=1, z[-2=4  z[-1]=5

and ;—[;.! =0forn< -3

(v1) We may similarly show that in this case,
aln] = ~20(1/2)"ul=n - 1] + n(1/2" u{-n 2.

10.24. (a) We may write X(z) as

1-2;:"1
X(E)m -2
Therefore,
1
J('(z} = ﬁ__"

If z[n] is absolutely summable, then the ROC of X(z) has to include the unit circle.
Therefore, the ROC is || > 1/2. It follow that

afn] = (%)zuln}-

{b) Carrying out long division on X (z), we get
1
X(z)=1-2"'+ %z'? ’Iz"“+ -
Using the analysis equation (10.3), we get
1=t
z[n) = é[n] = (-5) ufn — 1.

(&) We may write X(z) as

3! 37!
X(z) = - -
(=) 1-tet o122 (1= )1+ 427Y)
The partial fraction expansion of X(z) is
4 4
XO= T T

Sinee x[n] is absolutely summable, the ROC must be |zl > 1/2 in order to include the
unit circle. It follows that

zin] =4 (%)?u[ni -4 (—%)2u[n].

10.25. (a} The partial fraction expansion of X(z) is

2
X{z}=—l—- T

AL o,
—%z" 1=-3=

Since z[n] is right-sided, the ROC has to be |z| > 1. Therefore, it follows that

z[n) == (%)2u|n] + 2uln].
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10.28. (a) Using eq. (10.3), we get
§ —0.95
X({z)=1-095z"%= £
(z) =1-095z e

(b) Therefore, X (z) has six zeros lying on a circle of radius 0.95 (as shown in Figure 510.28)
and 6 poles at =z = 0.

Figure 510.28

{c) The magaitude of the Fourier transform is as shown in Figure 510.28.
10.29. The plots are as shown in Figure $10.29.

=7, + )
N 2 -1 0 P
Figure 10,20 & "

10.30. From the given information, we have

zi[n) 55 Xa(3) = 'T:F' Izl = %
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and : 1
F
z3ln] £ Xa(z) = T Izl > 3
Using the time shifting property, we get

aln+ 3 E K@, 1> )
Using the time reversal and shift properties, we get
zo[-n+1] a2 Xz, 2 <3
Now, using the convolution property, we get

yln] = nfn + 3 e zp[-n + 1] &5 ¥(2) = 22X (2) Xz, % <la| =3

Therefore, )
r

e e e

Y@ =g -1

10.31. From Clue 1, we know that z[n] is real. Therefore, the poles and zeros of X(z) hawe to
occur in conjugate pairs. Since Clue 4 tells us that X(z) has a pole at z = (120"’ e
can conclude that X (z) must have another pole at z = (1/2)e~2*/3. Now, sue X (<) has
no more poles, we have to assume that X(2) has 2 or less zeros. 1f X (z) has more than 2
zeros, then X (z) must have poles at infinity. Since Clue 3 tells us that X(z) his 2 avius at
the origin, we know that X (z} must be of the form

Az?
X(z)= P T %C_"”},

Since Clue 5 tells us that X(1) = 8/3, we may conclude that A = 2, Therefore.

2
X0 = G T
Sinee z{n] is right-sided, the ROC must be |z| > 1/3.
10.32. (a) We are given that hin] = a"u[n] and z{n] = uln] - u[n = N]. Therefore,
yin] = zln]+ hin)

i hfn — K]=[k]

k=—oo

N-1
Za""*u[ﬂ -k
k=0
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This may be written as

0, n<0
Yl = ¢ (@ =a"N)/(1=a"t), N<n<N=1
a"(1 —a~¥)/(1-a7"), n>N-1

This is the same as the result of part (a).

10.33. (a) Taking the z-tcansform of both sides of the given difference equation and simplifying,
we get
Y{(z) _ _'_I_
X(z)  1- el 4 1-7
The poles of H{z) are at (1/4) % j(v/3/4). Since hin] is causal, the ROC has to he
Iz > 1(174) + §(V3/a) = (1/2).
(b) We have

Hiz) =

X(z) = l_-i-le Iz} = %

Therefore, .

— 3z (1= 27t + 1z-2)
The ROC of ¥{z) will be the intersection of the ROCs of X(2) and H(z). This implies
that the ROC of ¥(2) is || > 1/2. The partial fraction expansion of ¥(z) s

__ 1 a~lf2
Hiays 1- 4z} ¥ 1 —!x"ﬁ- Y%

Using Table 10.2 we get
yln] = (;)nuln] + ;2-.5 (%)nsin (’—?) uln].

10.34. (a) Taking the z-transform of both sides of the given difference equation and simplifying,

¥(z) = H(z}X(z) = 0

we get -
¥ =
HG) = R = T =

The poles of H(z) are at z = (1/2) £ (vE/2). H(z) has a zero at = = 0. The pole-zero
plot for H(z) is as shown in Figure $10.34. Since hjn] is causal, the ROC for H(z) has
to be |z] > (1/2) + (vV5/2).
(b) The partial fraction expansion of H(z) is
1/v8 1/V5
H(z)=- ',
(2) e + gt

hin] = —% (l +2\/S) ufn] + ;}-E (I—_——z\/ﬁ) uln].
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Therefore,

Now, y[n] may be evaluated to be

0, n<0

n
Za“c“, 0<n<N-1

¥l =§ k=0
N=1
zc"a'*. n>N-1
k=0

Simplifying,
Q, n<0
) = ¢ (a" —a”1)/(1 —a™}), DEnEN -1 .

a*l-a"M)/(1-a'), n>N-1

(b) Using Table 10.2, we get

1
H(z) = g0y, 1zl > ol
and
- =N
X =121, Al
1-=
Therefore,

1 P

— 1)1 —az"1) i A=-z)I-az)

¥i(z) = X(z)H(z) = i
The ROC is |z| > |a]. Consider

1
PO = i —e
with ROG |z| > |e]. The partial fraction expansion of P(z) is
Py Mza) YO
1-z 1-az"!
Therefore,

1
pin) = Tz uln) + T a"ulnl:

Now, note that
Y(z) = P(2)[1 - =~ ¥].
Therefore,

y[n] = pln) = pln - N] = 11_'“[“"‘1 -ufn - N|} + lu—la:r{c"u[r:' —a" Muln - N}
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4 > >
L4 R
e
I=vi
z
Figure 510.34

{¢) Now assuming that the ROC is (v8/2) — (1/2) < [3] < (1/2) + (/5/2), we get

Kn) = 715 (1 *2‘/5) ul=n~1)+ % (%) uln).

10.35. Taking the z-transform of both sides of the given difference equation and simplifying, we
get

Y(z) 1 2=t
H(z) = —= = =
(!) X(Z] 2= % + 2! 1 ;z"l prape= 4
The partial fraction expansion of H(z) is
o -2/3 2/3
e 1 1=2270

If the ROC is |z] > 2, then
] i ; G) uln] + % (2)" uln].
If the ROC is 1/2 < |z]| < 2, then
alel = -3 (3) slol - 3 @ wi=n =1}
If the ROC is |2] < 1/2, then

hs[n] = % (;)“ u[-n-1] - ;(‘2)“u[—ﬂ -1}

For each hy[n], we now need to show that if y[n] = hi[n] in the difference equation, then
zln] = 6ln]. Consider substituting ki [n] into the difference equation. This vields

3 ()" uin =)= 3@ uln — 1) - §(3)" ul) _
+3@ruln] + 3 (5)" uln+1] - 1) +uln + 1) = zin]
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Then.
zjn] =0, forn<-1,
-1 =2/3-2/3=0,
zn)j=0, forn>0.
It follows that zjn] = én). It can similasly be shown that ha[n] and haln] satisly the
difference equation

10.36. Taking the z-transform of both sides of the given difference equation and simplifying, we

lF:l’!.
Yz} 1

'-I
H(z)= X = Z'T-!}-:; = m

The partial fraction expansion of H(z) is

3/8 3/8

H(z) = _l-iz" izt

Since H(z) corresponds to a stable system, the ROC has to be (1/3) < [2] < 3. Therefore,
n
hini= -3 (3) vl - §@rel-n -1

10.37. (a) The block-diagram may be redrawn as shown in part (a) of the figure below. This may
be treated as a cascade of the two systems shown within the dotted lines in Figure
510,37, These two systems may be interchanged as shown in part (b) of the figure
Figure 51037 without changing the system furction of the overall system. From the
figure below, it is ¢lear that

yln] = 2ln] + §ain = 1} = vl = 1]+ 3uln - 2.

Figure §10.37
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Pabiey = s |, B Yy, v 2z, 810
Pask(s): ®el,patl, ve s, S -1
Pottes i kot,pa-ily, v2 iy §=-ify

Paut )2 A= St 8z Uy, ¢ = Wirg, D= Y
Pask (6} : Az %4,8=1, &z Fly, Dz -l
Poukled: Axd, 5-“”&;(-%;“4’9“"‘” §10.39

Note that

SR | S | A [

Therefore, Hy(z) may be drawn as a cascade of four systems for which the coefficient
multipliers are all real.
(b) The direct form block diagram may be drawn as shown in part (b-1) of Figure 810.39

by noting that 1

1- it" +2 -3z 4 gzt

Hy(z) =

The caseade hlock-diagram is as shown in part (b-ii) of Figure S10.39.
Note that

1 1 1 1
Hylz) = ]:i = u;u,-r] [1 - ‘_;.1,—1] L » 1+;¥|5;] L B :_gi@r.]
Therefore, Hy(z) cannot be drawn as a cascade of four systems for which the eoefficient
multipliers are all real.
() The direct form block diagram may be drawn as shown in part (¢ei) of the Figure 310,39

by noting that .

1-221 + %:’3 e L

Ha(z) =

The cascade block-diagram is as shown in part (c-ii) of the Figure $10.39.

(b) Taking the z-transform of the above difference equation and simplifying, we get

Y() _ 1+fe 14 §2-!

Skl {7 I v =y e Rl e P T P

H{z) has poles at z = 1/3 and z = =2/3. Since the system is causal, the ROC has to
be {z| > 2/3. The ROC includes the unit circle and hence the system s stable.
10.38. (a) ¢;[n] = fi|n).
(b) ealn] = faln].

(¢) Using the results of parts (a) and (b), we may redraw the block-diagram as shown in
Figure 510.38.

t
i
i
A1

Figure §10.38

(d) Using the approach shown in the examples in the textbook we may draw the block-
diagram of H,(z) = [1+ (1/4)2=}/[1 + (1/2)2~}] and Ha(z) = [1-2z"'|/[1 - (1/4)z" 1]
as shown in the dotted boxes in the figure below. H(z) is the easeade of these two
systems.

(e) Using the approach shown in the examples shown in the textbook, we may draw the
block-diagram of Hy(z) = 4, Ha(z) = [5/3)/[1 + (1/2)z~1] and H(z) = [-14/3)/[1 —
(1/4)z""] as shown in the dotted boxes in the figure below. H(z) is the parallel com-
bination of H,(z), H:(z), and Ha(z).

10.39. (a) The direct form block diagram may be drawn as shown in part (a-i) of Figure 510.39
by noting that
Hy(z) =

1
1- gz-' - E‘x" S Lt L
The cascade block-diagram is as shown in part (a-ii) of Figure 810.39.
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Note that

s [emnta] ][] [

Therefore, Hy(z) cannot be drawn as a cascade of four systems for which the coefficient
multipliers are all real.

10.40. The definition of the unil | z-transform is

X(x) = i:[n!z"‘,

(a) Since z[n] = &[n + 5] is zero in the range 0 < n < oo, A(z) = 0.
(b) The unilateral Laplace transform of z{n] = d[n = 5] is

X(z) = Zuﬂn -5l =¥,

nul

(e} The unilateral Laplace

form of z[n| = (~1)"u|n] is

o
Az) = Z(—l}"n[n}:'“ =

1
2 =Faa |z| = 1.
(d) The unilateral Laplace form of zfn] = (1/2)"uln + 3] is
X = (/2 uln+ 37"
n=0
= Saprem
n=0
] L
e Izl = 1/2.

(e) Since z{n] = (=1/3)"u[~n - 2] is zero in the range 0 < n < oo, X(z) = 0.
(£) The unilateral Laplace transform of z[n] = (1/4)"u[-n + 3] is

]

i{l}d}"ﬂ-n +3)"

L)
3
= Yy (pmyr=
n=0

T e S0
= - - e Il =
1+4: +]6: +“x ., Allz

&(z)
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(g) The unilateral Laplace transform of z[n) = 2"u[-n] + (1/4)"ulr - 1] is

X(z) = i?‘u[—ﬂ} + {1/4) " uln - 1}27"

n=0

Sajare
n=0
= I . All z.

= I,—l‘

(1x) The unilateral Laplace transform of z{n] = (1/3)"~%u[n — 2] is
s

S0/l - 2™

n=0

LI
wm=0

A=)

27
1—_(172)1—_“ |z} > 1/2.

10.41. From the given information,

) = /2l 1)

n=0

= /2y a2
n=0

1/2

e e

and

a0 = S/A iz

n=0

Soajayee

n=0

1
mﬁ, j#| = 1/4.

Using Table 10.2 and the time shift property we get
Xi(z) = = Z

T

2l = 1/2.

and 1
Xa(z) = 1——F, =] = 1/4.
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Therefore, 1
M) s L1 +32)

The partial fraction expansion of Y(z) s

oyt 6/7
Yz = 1=}z 1T

The inverse unilateral z-transform gives the zero-state responsc
1/1\" 8o
o) = 3 (3) ulnl + -1t
(b) Taking the unilateral z-transform of both sides of the given vifference equation, we get
1 1
V(=) - %;"y(:; - gul-1] = Xz} - 32 1x(z).

Setting A'(z) = 0, we get
Y(z)=0.

The inverse unilateral z-transform gives the zero-input response
yailn] = 0-
Now, since it is given that z[n] = u[n], we have

X(z) = lzl > 1.

1
1=z

Setting y[=1] to be zero, we get

Y() - 5 = —y - ot

-

‘Therefore, 1
Yish= =3

The inverse unilateral z-transform gives the zero-state response
yasn] = ufn].
(e) Taking the unilateral 2-transform of both sides of the given difference equation, we get
D 1 e
Yia) - 3% (=) - gyl-1] = X(3) - 3= (=)

Setting X(z) = 0, we get 12
V== ]—_F
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(a) We have
y " z
6le) = Xy Xale) = =T
The ROC is [z] > (1/2). The partial fraction expansion of G(z) is

2 1

Using Table 10.2 and the time shift property, we get
1y 1\
g[n]:?(i) ufn +1] - (E) ufn + 1].

RO S
(1= éz"}(l - ;'i-z'l)-
The ROC of @(z) is |z| > (1/2). The partial fraction expansion of Y(z) i»

(b) We have
Qz) = Xi(z)Xalz) =

o o e e H
2|15 1=

= () = ()

Clearly, g[n] # g[n] for n > 0.

Therefore,

10.42. (a) Taking the unilateral z-transform of both sides of the given difference equation, we get
Y(z) + 3271 P(z) + 3u[—1] = X(z).

Setting A'(z) = 0, we get

-3
YE) = T
The i ilateral z-transform gives the zero-input response

vailn] = —3(=3)"u[n] = (=3)"*'u[n].
Now, since it is given that z[n] = (1/2)"u[n], we have

X(z) = 1_;

L

2] > 1/2.
Setting y[—1] to be zern, we get

(e} +3:71V(2) = l—_:—

327!
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The inverse unilateral z-transform gives the zero-input response
l n+l
yaln] = (i) ufn).

Since the input z[n] is the same as the one used in the part (b}, the zero-state
response is still
Yaaln] = ufn].

10.43. (a) First let us determine the z-transform X;(z) of the sequence x, [n] = z|=n) m terms of
X(=):
Xi(z) = z z|-nje""
= -0
o0

3 zln)”

X(1/z)

Therefore, if z[n] = z[-n], then X (z) = X(1/2).

(b) If 2y is & pale, then 1/X(z0) = 0. From the result of part (a), we know that X (2} =
X(1/20). Therefore, 1/X(z) = 1/X(1/2) = 0. This implics that there is 2 pole at
1/z0.

If zo is & zero, then X(zg) = 0. From the result of part (a), we know that X(20) =
X(1/29) = 0. This implies that there is a zero at 1/za.

{e) (1) In this case,
o 1+
X(z)=z43" ==, |z| > 0.
X (2) has zeros z; = j and z3 = —J. Also, X (z) has the poles g, = 0 and pz = 20
Clearly, 22 = 1/21 and p; = 1/p3, which proves that the statement af {b) is true.
(2) In this case, .
o + 2
X =z-3+et = EEEE >0

z
X(2) has zeros 1y = —1/2 and 2 = —2. Also, X(z) has the poles py = 0 and
p2 = co. Clearly, 23 = 1/ and p1 = 1/p,, which proves that the statement of {b)
is true.

10.44. (&) Using the shift property, we get
Z{Az[n]} = X(2) — 27" X(2) = (1 — =71 )X(2).
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(b) The z-transform X (z) is given by

oo

X = 3 alnE

n==0
oo

= 3 2]z~

L]

= X(22).

() Let us define a signal g[n] = {2[n]+ {(~1)"z[n]} /2. Note that g[2n] = x[2n] and gn] =0
for n odd. Also, using Table 10.1, we get

Glz) = %x(;} + %X(—z}.

The z-transform X(z) is given by

o

Xz = Y =i

n=m—on
o0

= z g[2n]z"

n==oo
oo

= 3 ol

Evenl
oo
= E gln)z A/
n=-00

= G(z'7)
= %X(z”“‘)+%x[—-a‘ﬂ).

10.45. In each part of this problem, we assume that the signal obtained by taking the inverse

z-transform is called z[n],

(a) Yes. The order of the numerator is equal to the order of the denominator in the given
s-transform. Therefore, we can perform long-division to expand the z-transform such
that the highest power of z in the expansion is 0. This would make zln] = 0 farn < 0.

(b) No. This z-transform can be obtained by multiplying the z-transform of the previous
part by z. Hence, its inverse is the inverse of the previous part shifted by 1 to the left.
“This implies that the resultant signal is not zero at n.= —1.

(¢} Yes. We can perform long-division to expand the z-transform such that the highest
powsr of z in the expansion is —1. This would make z{n] =0 for n € 0.

(d) Mo. When long-division is used to expand the z-transform, the highest power of zin
the expansion is 1. This would make z[-1] # 0.
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From Table 10.1 we know that

_ [ pln/8] =", n=0,%8,£16, -
haln| = { 0, otherwise

10.47. (a) From Clue 1, we have H(=2) = 0. From Clue 2, we know that when

X(z) = l—_:ii-;-_-i-, |z] > %
we have 1
Y(z) =1+ 1—_%-;—, lel > 3-
et ¥(z) (+a-}z"')(1=327") 1
H() = 505 = _'_1%?:-—1_’;_— 12> 3-
Substituting z = =2 in the above cquation and noting that H(-2) = 0. we gt
it
5

{b) The response to the signal zfn] = 1 = 1™ will be yln] = H(1)z[n]. Thercfore.
1
vln] = H(1) = -

10.48. From the pole-zero diagram, we may write

(z — Jei"/)z — Jem2/%)
Hy(z) = A(z_—foj""‘)(! = zc-jatﬂ)

and z- ie"“""}(z s %e—jsuﬂl
(z — 3ef/4)(z = gem2* /)

where A and B are constants. Now note that

Hala) = %H, (%ze") = %H. (-g:) .

Using the property 10.5.3 of the z-transform (see Table 10.1), we get

ol = 5 (=) mat

Hy(z)=B

We may rewrite this as
ha[n] = gn]ki[n,
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10.46. (a) Taking the z-transform of both sides of the difference equation relating z|n] and sfn]
and simplifying, we get

X(z) i 2 — gl

50) =1-r"e 2=

The system has an 8th order pole at z = 0 and 8 zeros distributed around a circle of

radius ¢~®. This is shown in Figure $10.46. The ROC is everywhere on the z-plane
except at z =0

Hi(z) =

4m

(b) We have
@) S@ _ 1
B =36 = X ~ e
Therefore,
1 #
) = s = F e

There are two possible ROCs for Ha(z): |z| < e @ or|z| > e™@. Ifthe ROC s |2) = 7%,
then the ROC does not include the unit circle. This in turn implies that the system
would be unstable and anti-causal. If the ROC is |2 > ™, then the ROC includes
the unit circle. This in turn implies that the system would be stable and causal

{e) We have
Hy2) = ———pz
a(z) 1— 28¢5’
‘We need to choose the ROC to be |z| > ™ in order to get s stable system. Now
consider

PE) =

g pe=
with ROC |z| > e~°. Taking the inverse z-transform, we get
pln] = e~*"uln).
Now, note that
Ha(z) = P(z*).
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where g[n] = (B/A)(—2/3)". Note that since both hy[n] and hafn] are causal, we may
assume that g[n] = 0 for n < 0. Therefore,

ol =5 (-3) i

Naw, clue 3 also states that _|glk]| = 3. Therefore,

£2()-

‘Therefore,

gln| = (—g)“u[n],

10.49. {a) We may write the left side of eq. (P10.49-1) as

S~ el = 3 el () = 5~ etles™ (2

n=N; n=N;

) IlSlUl‘lb‘-l)

Since r; = 1o, the sequence (ri/rg)”" decays with increasing n, 1e, as n = o0
{r1/r0)~™ — 0. Therefore, (r1/ro)™ < (r1/ro) ™ for n = Nj. Substituting this
in €q.($10.49-1), we get

3> elnllei® = § fefm)ir™ (r—) T (2 )'"‘ 3 et

azN; o

n=N,

Therefore, A = (ry/re)~™ = (ro/r1)™".

(b) The above inequality shows that if X(z) has the finite bound B for |z| = ro, then
X(z) has the finite bound (ro/r)™ B for |z| = ri 2 ro. Thus, X{z) converges for
|z| = r1 = rg and Property 4 of Section 10,2 follows.

(c) Consider a left-sided sequence z[n] such that
zln)=0, n>N;
and for which

3 fellirg™ = 3 felnlirg™

n=-00 n=-00



Then we need to show that if r) < ro,

N3 Ny .
S llnlirim < P Y lalnliig™ (810.49-2)
L -] n=—-00
where P is a positive constant.
We may write the left side of eg. (510.49-2) as

N N3 N Nz 5
5 el = 3wl () = 3 o™ (5

n==oo nE—-oo

) (S10.49-3)

Since ry < rg, the sequence (ry/rg)™" decays with decreasing n, i-e..lab_u -+ -0
{rifro)"" =+ 0. Therefore, (ri/ro)™" = (ri/ro)=™2 for n € Np. Substituting this in
eq.{510.49-3), we get

Ny N3 -n =Nz J::‘ .

Therefore, P = (ry/ro)™ = {ro/r)e.

The above inequality shows that if X (z) has the finite bound B for |z| = ro. then
X(2) has the finite bound (ro/r1)¥:B for |z] = ry < ro. Thus, X(z) converges for
|z] = 1 € ry and Property 5 of Section 10.2 follows.

10.50. (a) From the given pole-zero plot, we get

H(:) = A2,
where A is some constant. Therefore,
e~ ~a
H(e™) = Ao
!
. ey = HieH e = AP [ [
Therefore,

ae™1 — ge’* +a*

= |AP.
ge=1¥ - ael + a?

[H@)F = AP =

This implies that |H{e™}] = |A| =constant.
(b) We get | ]* = 1 +a? — Zacos(w).
(e) We get =% : ;
i 2
=14+ T pesws= an’ +1+2acosuw] = o—,lwi
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10.52. We have

Xa(z) = f:z:[n];"“

= in[—n]z_"
= i:;[n]x“

= Xi(z"") =X (1/2)-

Using n argument similar to the one used on part (b) of problem 10.43, we may argue that
if X1(z) has a pole (or zero) at = = =g, then X2(z) must have a pole (or zero) at z = 1/z.

10.53. Let us assume that z[n) is a sequence with z-transform X (z) which has the ROC & < iz] <
a.
(&) (1) The z-transform of the sequence yln] = z(n - no] is

o
Yy = 3wl

L
oo

= 2 zfn = ngl ™"
as-o0
Substituting m = n — ng in the above equation, we get
o0
Y(z) = z zlm]z~™""

m=—ao
=

2 E zlm)z™™

= z""™X(z).

Cleasly, ¥ (z) converges where X(z) converges except for the addition or deletion
of z = 0 because of the =™ term. Therefore, the ROC of ¥(z) is & < [2] < g
except for the possible addition or deletion of 2 = 0 in the ROC.

(2) The z-transform of the sequence yfn] = z5zn] is

Y(z) = i ylnlz™"
= ‘_Z zpznja™
= 3 slnle/a)

= X(z/z)
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10.51. (8) We know that for a real sequence zn, z{n] = z*[n]. Let us first find the z-transform
of yn| = z*[n] in terms of X (z), the z-transform of z[n]. We have

?: yln]z™"

z z’[n)z™"

s

- .
=[ﬂl(=')"‘]
n=—co

X = X*(=").
Now, since z[n] = z°[n}, we have Z{z[n]} = Z{z’[n|} which in turn implics that
X(z) = X*(z*).

(b) If X(z) has a pole at z = zg, then 1/X(z5) = 0. From the result of the previous part,
we know that 3

X

Conjugating both sides, we get 1/X(25) = 0. This implies that X(z) has a pole at z5

If X(z) has a zero at z = zg, then X (25) = 0. From the result of the previous part,
we know that

¥(z)

X"(z5) =0.
Conjugating both sides, we get X (z5) = 0. This implies that X (z) has a zero ar =5,
(€) (1) The z-transform of the given sequence is

X(@)m—— =2 >
- |

1-4z7' =
Clearly, X{z) has a pole at z = 1/2 and a zero at 2 = 0 and the property of part
(b} holds.
(2) The z-transform of the given sequence is

2
X(:j=l—%x'+%:"=w. fzl = 0.
X(z) has two zervs at 2 = 1/2 and two poles at z = 0. The property of part (b)
still holds.
(d) Now, from part (b) of problem 10.43 we know that if z[n] and X(z) has a pole at
2 = pe?? | then X(z) must have a pole at (1/25) = (1/p)e™2",

If a[n] is real and X(z) has a pole at 2 = pe®, then from part (b) we know
that X(z) must have a pole at 2§ = pe™7®, Now, from part (b) of problem 10.43 we
know that if z[n] and X(z) has a pole at =5 = pe~?® then X(z) must have a pole at
(/) = (1/p)e.

A similar argument may be constructed for zeros
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Since X(z) converges for o < |2] < A, ¥(z) converges for o < |z/z| < # There

fore, the ROC of ¥ (£) is |zgler < 12| < |20]8.
(3) The z form of the sequence y[n] = z[=n] is

¥z} = 2 y[nlz™"

= z z[-n|z""

A==00

Since X (z) converges for & < 2] < 8, Y(z) converges for a < |1/z] < 8. Therefore,
the ROC of ¥(z) is (1/8) < |z < (1/a).

(b} (1) From Problem 10.51(a), we know that the z-transform of the sequence y[n| = =*[n]
is ¥(z) = X*(z*). The ROC of ¥(z) is the same as the ROC of X(z).
(2) Suppose that the ROC of z|n] is a < |z] < 5. From subpast (2) of part (a). the
z-transform of y[n] = z0z[n] is
Y(z) = X(z/z)
with ROC |zgla < 2| < |z0|8. Therefore, Ry = || Rz
10.54. (a) Let z[n] = 0 for n > 0. Then,

o0

z z[n]z "

n==0
o

Z z[n)z~"

F——

z[0] + z[-1)r + =[-2)2 + -

X(z)

]

Therefore,
lim X(2) = =[0].
(b) Let z[n] = 0 for n < 0. Then,

Z z[n)z"

n==oo

iz[nis"‘
n=0

= z[0)+z[l)a "' + (=2 2+

X(z)
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Therelore,

‘I_i’n; (X (z) - z[0]) = Jim 2 {z(1)e! 42224y = =[1].

10.55. (a) From the initial value theorem, we have
lim X(z) = z[0] = non-zero and fnite.
Eind= 1

Therefore, as z = og, X({z) tends to a finite non-zero value. This implies that Xz}
has neither poles nor zeros at infinity,

(b) A rational z-transform is made up of factors of the form 1/(z = a) and (r - b) Note
that the factor 1/(z ~a)hasapoleat 2z =aand a zero at 2 = oo. Also note that
the factor (z = b) has a zero at z = band a pole at z = 0o. From the results of part
(a), we know that a eausal sequence has no poles or zero at infinity. Therefure, al]
zeros at infinity contributed by factors of the form 1/{z - &) must be canerlle] out by
the poles at infinity contributed by factors of the form (2 = b) This imples that the
number of factors of the form (z - b) equals the number of factors of the form iz a)
Consequently, the number of zeros in the finite z-plane must equal the pumber of poles
in the fnite z-plane.

10 586. (a) The z-transform of za[n) is
o
Xifz) = 3 gafnjemn
na=co
e

= 3 | 3 aba -ki}

n=-g0 k=

. Eon] S -]
k=g e

- i 7, [k] Z{z2[n - )}

k=00

¥ st

k=-p0

(b) Using the time shifting property (10.5.2), we got
Xaf2) = Z{zafn — k) = =4 Xy (z),
where X;3(z) is the z-transform of zzn]. Substituting in the result of part (a). we get

o
Xalz) = Xa(z) 3~ mafkjz*,

kz=og

0.59. (a) From Figure 510.59, we have

1
1+ 2V

Wilz) = X(z) - ;r“’W.(x) = W) =X(2)

Also, T
ko =
Wy(z) = =3* 'Wi(z) = —X(‘}T_{“;_;_‘l"

Therefore, ¥(z) - W, (2) + Walz) will be

1 N kl—l
T v ek

JX) _1-de
i (- r?r:
Since H(z) corresponds to a causal filter, the ROC will be |2] > |k}/3.

(b) For the system to be stable, the ROC of H(z) must include the unit ecircle. This 1s
possible only if |£|/3 < 1. This implies that {kl has to be less than 3.

(e) If k =1, then

Y(z) = X(z)

Finally,

142
)= P4 4z=1"
The response to xfn] = (2/3)" will be of the form

vinl = =ln)12/3) = > 273
»0. The unilateral z-transform of 1"!"] = z[n + 1] is

V(=) = f:y[n]z"‘
L
= uf0] + yjt)s™ + 22 ...
= sl 4zt ¢ 23T 4
= #=l0) + 21} 4222 4 2f32 4 ) - 2afg)
= z&(z) - zzf0].
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(c) Noting that the 2-transform of 7i[n] may be written ag

Xile)= 3y [k]a,

ke oo

We may rewrite the result of part (b) as
Xalz) = Xy (2) X0 (2).

10.57. (a) Xy(z) s a Ppolynomial of order Ny in =1, X2(2) is a polynomial of order N,
Therefore, ¥{(z) = Xi(2)Xa(2) is a polynomial of order Ny + Ny in 2!, This i
that Af = N+ N,

(b) By noting that y0] is the coefficieat of the % term in ¥(z), y[1] is the coeffic
the 271 term in ¥'(z), aad y[2] is the coefficient of the z=* tetm i ¥ (2), we get

vo] = z[0}rz[0],

¥[1] E [D]:zflf + 211z (0],
w2 = zi0)z(2) + Zi[lza{1] + 21 [2z; 0],

[}

(e) We nate the pattern that emerges from part (b). The &-th point in the sequence
is the coefficient of 2= iy ¥(z). The z~* (e of ¥(z) is formed by the following
(the product of the 20 tary, of Xi(z) with the z=* torm of Xa(z)) + (the prod,
the z=! term of X1(2) with the z—t+1 term of X3(2)) + (the product of the =2
of Xi(z) with the : k42 yorp, o X2(z)) + ... + the (product of the = ™ o
X1(z) with the z-++M term of X(z)).

Therefore,

v[k] = Zl:n {ra)zalk = |
m=o

Since zifm] =0 for m » Noand m < 0, we may rewrite this as

vkl = 3 oimizyfk - m),

10.58. Consider a causal and stable system with system function H{z)., Let jes inverse syst
have the system function Hi(z). The poles of H(z) are the zergs of Hi(z) and the zerc
H(z) are the poles of Hi(z).

For H(z) to correspond o a be causal and stable system, all its poles must be wit]
the unit cirele. Similarly, for Hi(2) to correspond to a be causal and stable system, all
pole? must be within the unit circle. Sinee the poles of Hi(z) are the zeras of f(z), u
Previous statement implies thae the zeros of H(z) must be within the unit eircle. Therefo
all poles and zeros of 5 minimum-phase system must lie within the unit circle,
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10.61. (a) The unilateral #-traasform of y[n] = =[n + 3is

=3
(z) = zy[nl-r"‘
n=0

= f::{n + 3J==n
= a3~ 2{0)s - o152 - opa):

n=-3

-~ Zx[n]x'“’ - z{0)z" — 2[1j2? - 2[2)z
n=0

= zsz:{n]x"' ~ =2[0)2* - z{1]:2 - z(2)z
n=0

]

X (z) = 2[0)2? - [1)2? - 2[2):
(b) The unilateral z-transform of y(n] = z[n - 3] is

Y = 3yl

n=0

= Er[n = 3]=="

n=0

= Y zln-3pny 2[=1z7% 4 2[=2)2~! 4 2]-3)
n=3

= iz[n]z"‘" (=17 4 x(=g)e 4 z|-3)
n=0

= ‘hli’["lt" + 21272 e gog)t 4 2[~3)

= X w12 4 #[~2J7! 4 z[-3)

(c) We have

n o0

yln] = z z(k] = z[n - m|.
k=-00 m=i
Therefore,

o0 el m
M) = Fema)4 PIERS W
m=0 =1

m=]
oo "
= ey
mml ]



10.62. Note that s
¢usln) = 3 zlklzln + k| = zn) « 2[-n}
k==00
Now, applying the convolution property, the z-transform of dzz[n] is
Poe(z) = X(I)Z{:[—n]}.

From the time-reversal property we know that the z-transform of z[=] is X(1/2) ‘There-
fore,

ozlz) = X(2)X(1/2).

10.63. {a) Since the ROC s 2| < 1/2, the sequence is Jeft-sided. Using the power-series expansion,
we get
o0 -1 -
b-of Z o
log{l —23)_ ‘n—lT =_n:—m' o '

Therefore,

z[n] = 2—;u[—n- 1}.

(b) Since the ROC is |2] > 1/2, the sequence is right-sided. Using the power seTIes UXpan-

sion, we get

o n,-n
log(l - (1/2)z71) = -zﬂ;‘—

n=1
Therefore,
ot 1
zn] = - TII["I -1].
10.64. Let us define Y(z) to be
Y(2) =~ 5 X(a).
Then using the differentiation property of the z-transform, we get

yin] = nafn.

(a) Now,
1

d 2
Yz} = —zEX(x} 2 —l—-_;’—z_’-.

Noting that the ROC of ¥'(z) is {2] < (1/2) (the same as the ROC of X{z)), we get

i = (5) ==

z[n] = % (%)“ u-n-1]= %u[-—n -1]

This is same as the answer obtained for Problem 10.63(a).

Therefore,
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10.66. (a) We are given that :
] —~z=
Therefore,
1= =i el _ gmiwf? W
Hyle'™) = He (1—_'_‘—_,.,) = H. (c,"..,;—_—: . e“l“f-’) = H, (3 tan E) 3

(b) From the given Hc(s), we get

1
HLO) = ey~
and 1
Heloo) = Tymoo(s + &™) (s + e=*1) =0
Now

IHliw)l = Gorormpee {,;WFrvq—emlﬂim

Tlmw? )+ cod? (7 /AR
Clearly, | He(jw)| decreases monotonically with increasing .

(&) (1) We are given that ;
1=z
e =t (55):

Therefore, i

(FEmre(iEm+ emim/8)

Halz) =

This may be rewritten as

= 1 (1+z70)?
) = AT+ e [1 - s el - o

Therefore, Halz) has exactly two poles which lie at z = —(1 4+ &™) /(1 - Y
and z = —(1 + e=7*/4)/(1 — 7714, It can be easily shown that both these poles

lie inside the unit circle.
(2) From the result of part (a), we have

Hal(e®) = He(j tan0) = H(j0) = 1.
{3) We have
|Hale?™))

i N I——
|He (J““"ﬂl{ = Toant D+ v gl 2
:7(l-n.ig..;:nl+:mr(.,m = T#ant o’

As w increases from 0 to pt, tan{w/2) increases monotenically from 0 to co. There-
fore, |Hale?™ )| decreases monotonically from 1 to 0.
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(b) In this part,
4 1,-1
Y(z)= —zaxm = _I—l - %z"‘

Noting that the ROC of ¥(z) is |z] > (1/2) (the same as the ROC of X(z)), we get

Lyt
yin] = ~5 (i) uln—1).
Therefore,
i) =~ (%).. ol = 1] = -2l ufn - 1)
This is same as the answer obtained for Problem 10.63(b).
10.65. (a) From the given He(s), we get

la—juwl _ Val+u? _

MG = jo 5l = Varr e

(b) Applying the bilinear transformation, we get

Hylz) = e !1-:%' i 142713
1oz ey
ﬂ+,::?r a+l|1+z 1;—J

Therefore, Ha(z) has a pole at z = (e —1)/(a + 1) and a zero at z = (e +1)/le=1).
Since a is real and positive,

a-=1
o+l

L

a-—1

"

ISI and

n+l‘

Thercfore, the pole of Hy(z) lies inside the unit circle and the zero of Hg(z) lies outside
the unit circle.
() Hg(z) may be rewritten as
s -1
Hiz) = M{l_
{a+1)+z"Ha—-1)

Therefore,

|H ()| = le=1+e?(@+1)] _|{a—1)+{cosw— jsinw){a + 1)
ler D) reo(a—1)|  |a+ 1)+ (cosw - juinw)ie = NI’

This may be written as

2117 +owe® a1 ) +2{a+1){a—1) coswt{a i) 3ind

lfl]"‘ﬁ:ﬁ’win-l!’-&l‘{ﬂ-&l (a— 1) coswrtia—1}? sin’
= a- 17 +{a+117 +2(a+i)a-1}cow _ :

a+ 1) +{a=1)"+2{c+1){a~1) conw

()

<
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(4) The half-power freq wq satisfies the relationshi

2_1 wyy |2
[Ha(* ) = 5 = |H¢ (J tanT)l .
We know that |H(j)|? = 1/2. Therefore,

jaa=; = we=rw/2
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