
Lab 4: A Pipelined SMIPSv2 Processor

4541.763 Laboratory 4
Assigned: October 20, 2009

Due: November 3, 2009

1 Introduction

In this laboratory assignment you will implement a fully pipelined SMIPSv2 processor in Bluespec
SystemVerilog. As with the previous labs, you are responsible for a working design as well as written
answers to critical thinking questions. Happily, we’ve managed to fix the problems with running
designs on the FPGA, and as a result you will need to compile and run for the XUP as well. Please
plan accordingly.

The main goal of this lab is to understand how your designs are scheduled, and we hope that after
completing it, you will have a much better understanding of how rule scheduling works in Bluespec.
In addition to answering the critical thinking questions, you will need to make sure your design
meets certain performance criteria (instructions-per-cycle on given benchmarks). Efficient execution
of your design will be unattainable without the correct schedule, so you will need to think deeply
about the rule interactions; you may want to review the lectures on this topic before proceeding.

While we’ve introduced wire constructs explicitly in the lectures, it is generally not a good idea to use
them directly in your designs. Instead use the tuned performance library modules (i.e.,LFIFO) some
of which are part of the standard Bluespec library, and some of which we have created specifically
for use in this lab. This will allow you to reason about the correctness of your design using the
default modules, and then to swap then out for ones which change the scheduling restrictions (often
at the expense of adding combinational paths). More details on these modules will be given later in
the lab handout.

As the starting point, you are given a fully functional multicycle SMIPSv2 (a simplified version of
the MIPS ISA) processor. This design has three separate rules with mutually exclusive guards, that
each implement one of the three stages of the processor pipeline. This design takes three cycles to
process a instruction and only one instruction is active in the pipeline at any given time. Your task
is to fully pipeline the design by adding the necessary hardware to allow multiple instructions to
execute concurrently, and to add the required guards/stalling logic to make sure that instructions
will execute correctly. In addition, you will need to create a simple BTB branch predictor to further
improve your processor’s IPC.

The full instruction set for the SMIPSv2 architecture is listed in Section 7. Though you have been
provided with functions to decode the instruction words, this reference may still be of some use to
you when implementing the stall logic.

2 Processor Overview

Figure 1 shows all the components (both HW and SW) used in this lab. The communication stack,
client stub, server stub, and STAT registers are all services provided by AWB which make our
lives much easier. The server stub in the HW is used by the SW to read status registers and collect
execution statistics. In order to communicate with this server, the SW must instantiate a client stub
and make sure that the message names are consistent. Message names are merely integers, and their



payloads are 32 bit integers. The HW and SW must agree on the message semantics (for example:
1 instructs the HW to send back the value of the program counter, while 0 refers to the cp0 tohost
register). Due to resource constraints, we have chosen not to implement the processor memory on the
FPGA but rather to implement it on the SW side and read and write it by isssuing the requests and
responses over the serial connection using AWB’s client/server utilities. We then create a memory
server in SW, and instantiate a client in the HW to request memory operations at specified addresses.
The last bit of AWB magic is the statistics registers. This is a service provided by the AWB libraries
whereby you instantiate registers of type STAT in the hardware, and give them names (an actual
string). This name is then recorded in a .dict file and SW can refer to these values by name. For
example, we have a STAT register named STATS PROCESSOR CYCLE COUNT, whose function should
be obvious. After running a particular benchmark, we can simply read these values in software and
dump them to a file using functions provided by the STATS DEVICE SERVER CLASS. For an example
of some of the AWB services discussed here, look in the file ProcessorSystem.cpp to see how the
client stub can be used to read state from the Processor, as well as how statistics are gathered.
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Figure 1: Lab Setup

A sketch of the original multicycle microarchitecture is given in Figure 2. You can see that there is
a stage register which tracks the state of the processor. Originally, the state of the processor is “P”
(pcgen) indicating that a request is sent to the instruction cache for the memory (instruction) at the
address stored in the program counter. The pcgen rule then sets the stage to “X” (execute), which
allows the execute rule to fire once the instruction has been returned. The instruction is decoded,
registers are fetched, and the instruction is executed. If the instruction is an ALU instruction, the
registers will be written, and the stage will be set back to “P”. If it is a memory instruction, the
memory request will be sent to the data cache and the stage will be set to “W” (writeback). If it is
a branch instruction, the program counter will be updated and the stage will be set to “P”.

The Hardware module hierarchy is relatively self explanatory. At each level, the sub-modules are
instantiated and their client/server ports are connected appropriately. Take some time to familiarize
yourself with both the Hardware and Software components of this project, as familiarity will aid in
your debugging. It is unlikely that you will have to add either additional RRR message names, or
STATS registers, but should the need arise, it is relatively straightforward.
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Figure 2: Original Microarchitecture

As you might expect, you will need to create your own copies of the AWB models implement-
ing the application shown in Figure 1. We have given you two versions of this, one which ex-
ecutes the HW in simulation, and one which runs the HW on the XUPv2. You can find these
models by going to Modules ⇒ mit-6.375 ⇒ processor. basic processor exe runs the HW
in synthesis, and basic processor xup runs it on the FPGA. Create copies of these two models
in your local lab4 model directory ( workspaces/labs/src/mit-6.375-<yourname>/config/pm/
mit-6.375-<yourname>/lab4), naming them pipelined processor exe and pipelined processor xup
respectively. All your microarchitectural refinements will occur in the processor module. You
can examine the files which make up this module by opening one of the basic processor mod-
els up in the APM editor and double clicking on the sub-module named processor (model ⇒
application-env ⇒ connected application ⇒ core ⇒ processor in the module hierarchy).
The processor module consists of four files: Processor.dic, Processor.bsv, ProcTypes.bsv,
and processor.awb You will need to duplicate all these files into your personal lab4 modules di-
rectory (workspaces/labs/src/mit-6.375-<yourname>/modules/mit-6.375-<yourname>/lab4).
Rename the .awb file to pipelined processor.awb, and and edit the contents of this file appropri-
ately so you can distinguish it in the Alternative Modules browser. Lastly configure your two new
models to use this new module: now you are ready to begin refining it.

NOTE: The deliverables for this lab consist of the answers to the critical-thinking questions, the two
processor models (checked into your lab4 model directory), and the fully pipelined processor module
(checked into your lab4 modules directory). Feel free to add new .bsv files to your new processor
module; just remember to correctly list the new file dependencies in pipelined processorl.awb

3 Debugging your design

In addition to a working model, you will also start with a full set of micro-benchmarks (written in
assembly code, .S files), which test the correctness of individual instructions (or small combinations),
as well as a number of larger benchmarks (written in C), which are used to test the correctness as
well as the efficiency of your design. Unfortunately, we were not able to port the SMIPS compiler
to our current lab setup, so recompiling the benchmarks requires an MIT Athena account. We
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don’t anticipate the need to recompile the benchmarks, but if you feel compelled to, just ask one
of the TA’s for help. The approach to take is to look at the assembly (or C code) to get an
idea of what instructions you should look for in your processor pipeline. Then try and correlate
this with your trace output. The test source files are located on AFS at the following location:
/afs/hyewon.snu.ac.kr/tools/awb/share/benchmarks/hasim/smips.

Information can be gleaned from your executing processor using a number of means. First of all,
we can use the STATS service to generate execution statistics. Statistics gathering is enabled by
writing a special register cp0 statsEn. This is done using the MTC0 instruction (used to write to
coprocessor registers), which you can see implemented in Processor.bsv. Remember that stats
are enabled using an instruction in the program binary itself, not by a command from the SW
component of the connected application.

As you may have deduced, the backing memory is implemented over a [very slow] serial connection,
which could cause pathologically poor performance on the benchmarks. As luck would have it (yeah
right), our caches are large enough that we can fit the entire working set for each benchmark on the
FPGA. We consequently execute the benchmark twice, first to prime the caches, and a second time
to collect statistics. You will notice that the benchmarks write a 1 to the cp0 statsEn register only
after the first run has primed the caches, thus the generated statistics will only reflect the second
execution. Once completed, you will find the .stats file in the bm directory corresponding to the
benchmark. Remember that this register is not set for the micro-benchmarks, so you won’t find
a .stats file after running these. In general, this is okay, since these micro-benchmarks are small
enough that you can examine the trace (discussed below) to see exactly what instructions are in
flight.

We have also provided some infrastructure for producing text traces of the processor. If you ex-
amine the BSV source for the core you will see various uses of the traceTiny() and the traceFull()
functions. These trace functions output a trace tag and some trace data, and use the Bluespec
action $fdisplay to send the debugging strings to stderr. The execution scripts redirect stderr to
a file called proc.trace, which you can find in the bm directory of the test you are running. In the
the directory workspace/labs/src/mit-6.375/scripts, you will find two files, bsv-trace.pl, and
proc-trace.conf. The bsv-trace.pl perl script can turn this trace output into a clean text trace format
with one cycle per line. The script takes a configuration file (proc.conf) as input which describes
how to transform the trace output. For example, the following commands will produce the trace
output, part of which is shown in Figure 3.

% bsv-trace.pl proc-trace.cfg proc.trace

The first column lists the cycle, after which the pc is printed. Following that, is a character cor-
responding to the current stage or rule which is executing in the processor (P for pcgen, X, for
execute, and W for writeback). Next is a column corresponding to the state of the instruction
cache, followed by a column corresponding to the state of the data cache. The pen-ultimate column
displays to the state of the memory arbitor while the last shows the instruction being executed.
Look at the implementation of each module which outputs traces for a better idea of the meanings
of each field. It is relatively simple to add new trace messages, and to extend the perl scripts to
format them appropriately. You may find this useful when pipelining your designs as the version
provided may not print out all the information you need.

Lastly, you will debug this in simulation, so your old friend $display will always be there for you.
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processor-state [ icache ] [ dcache ] [ mem-arb ]

pc stage [req|resp|stage|hit/miss] [req|resp|stage|hit/miss] [req0|req1|req2] exInst

...

...

CYC: 1293 pc= [ | | | ] [ | | | ] [ | | ]

CYC: 1294 pc= [ | | | ] [ | | | ] [ | |l00 ]

CYC: 1295 pc= [ | |R | ] [ | | | ] [ | | ]

CYC: 1296 pc= [ |l00 | |h] [ | | | ] [ | | ]

CYC: 1297 pc= X [ | | | ] [ | | | ] [ | | ] bne r2, r3, 0x0002

CYC: 1298 pc=00001018 P [l00 | | | ] [ | | | ] [ | | ]

CYC: 1299 pc= [ | | |m] [ | | | ] [ | | ]

Figure 3: formatted trace

4 Pipelining the Processor

The microprocessor you have been given has both instruction and data caches. These caches use
a request-response protocol for both reading and writing, meaning that even on a cache hit, data
will not be available until the following cycle. The presence of these two-stage sub pipelines require
that your final pipelined microarchitecture consist of at least 3-stages (they may overlap on one
stage). The recommended partitioning for your fully pipelined design is shown in Figure 4. This
has the benefit of closely matching the 3 cycle rules in the original design. You are welcome to try
other pipelining strategies, but you may not change the interface to the memory substructure and
must still achieve good pipeline parallelism. Before continuing with the lab, it may be worthwhile
to review the processor lectures.

Figure 4: Pipeline Rules for SMIPSv2 Processor

The pipelined microarchitecture presented in Figure 4 is quite straightforward. The pcGen stage
performs three functions. First, it sends a request for the current instruction to the instruction cache
instClient. Secondly, it sends the address information (the pc and epoch) using the pcQ to the
next stage, and lastly, it predicts the next PC value by setting it to pc + 4 (later we will look at
more effective means of prediction).

The execute stage takes the response from the icache, as well the data from the pcQ, looks up the
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current value for the registers, and performs the computation for arithmetic and branch instructions.
The behavior here diverges slightly, depending on whether the instruction is ALU, BRANCH, or MEM.
For MEM (memory) instructions, a request is sent to the data cache (dataClient), and in the case
of a load, the destination register is enqued into the wbQ (writeback queue). In the case of an ALU
instruction, the result is computed and enqued into the wbQ along with the destination register. The
only effect of BRANCH instructions is to update the program counter, so the execute stage need not
enqueue any data in the wbQ when executing one of these. The last function of the execute stage is
to discard mis-predicted instructions.

The writeback stage must complete the execution of ALU and MEM instructions. ALU instructions
only require their results to be writtent to a specified register. If the wbQ contains a MEM-load
instruction, it must dequeue the memory response, and write the value to the specified register.
If the wbQ contains a MEM-store instruction, this rule need only dequeue the null load-response
token from the memory response queue.

For your pipelined design you will probably want to closely follow the microarchitecture in Figure 4,
which uses three main rules rules, along with auxiliary rules for dealing with the epoch, which we will
explain in in Section 4.2. The interaction of these rules will be key, so carefully craft their predicates
and actions. When is it safe to execute the next instruction? What actions should the writeback
rule perform? Careful thought about the intent of each rule will aid you during implementation.

To achieve full pipelining you will be required to start instructions speculatively. This has several
important ramifications:

1. You must correctly detect dependencies and stall the pipeline when necessary. Sometimes,
stalls can be avoided by adding bypassing logic (a bypass register file, for example), but when
the stall involves memory, there isn’t a whole lot that can be done.

2. When a branch is mispredicted you should not only kill instructions which were incorrectly
fetched but also ignore the responses from memory requests these instructions have made,
but not yet handled. This is accomplished through the use of the epoch register and will be
discussed in more detail. Remember that there are some instrucions which should never be
speculatively executed. Though the issue probably won’t arise in our little 3-stage pipeline,
think about what might happen if speculatively executed a store to memory.

3. Intermediate state FIFOs should be constructed to have the correct scheduling properties and
necessary buffering. This is a primarily a performance consideration: if you do all this work
without achieving parallelism, your efforts are largely in vain.

4. You must keep the reads and writes coherent. In many pipelines this is solved by only updating
each state element(e.g.,the register file) in one stage. If you choose to write in two different
stages, you must be careful that the logical order is obeyed. The recommended microarchitec-
ture shown in Figure 4 isolates all register updates to the writeback rule. Deviate from this
policy at your own risk!

As part of our policy of “correct then fast”, your first step will be to modify your design so that it
can correctly handle multiple active instructions.

Although, the three rules you have been given are very close to the three stages, you will want to
reason think about some simple things before you continue. After you have thought about these
cases, you should have a good idea what changes to the state and rules are needed at a high-level. The
subsequent subsections will walk you through some of the more tricky details of the stall generation.

1. You will need to create pipeline FIFOs and searchable FIFOs (SFIFOs) to hold intermediate
data between stages. Searchable FIFOs are used in order to detect what instructions (more
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specifically: which destination registers) are in flight so that the pipeline can be stalled when
a hazard is detected. What state does each of the pipeline stages need for each instruction?
Where is that generated? What data must you pass between each stages?

2. In the processor in the class lectures, when we discover a mispredicted branch we could imme-
diately kill all of the false-path instruction. However since we’ve split the instruction read to be
multi-cycle, we may have pending responses waiting in the queue. As a result, after you handle
a misprediction you will still have to wait for the false-path instructions’ memory responses to
return. To solve this you will need to mark each instruction using an epoch mechanism. We
will discuss more of this later in this document.

3. In which stage (or stages) do you need to read the register file? When are the instructions
read? When must we stall reading to prevent us from reading the wrong value in the register
file?

4.1 Building the correct stalling logic

One significant part of this assignment is generating the stall signal for the execute stage. When is
it safe to read the register file and execute the next instruction? Essentially, this means detecting
Read-After-Write (RAW) hazards. So if our design is executing the following program:

A) addiu r6, r10, 1

B) xor r4, r5, r6

The processor will eventually reach the following state:

Instruction B cannot be executed because it reads r6, and instruction A is responsible (and has not
yet) written the new value back to the register file. This means we need to stall until the instruction
A writes the register file. We will implement this using SFIFO, a searchable FIFO. with the following
interface:

interface SFIFO#(type any_T, type search_T);

//Standard FIFO methods

method Action enq(any_T data);

method Action deq();

method any_T first();

method Action clear();

//New SFIFO methods

method Bool find(search_T searchVal);

method Bool find2(search_T searchVal);

endinterface
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Note that SFIFO is just like a normal FIFO with two extra methods: find() and find2(). These
methods take a datatype parameter (the same datatype the FIFO is storing), and return a boolean.
Specifically, they return True if the given parameter is present in the FIFO, and False otherwise.
find() and find2() have no implicit condition — they always ready — they will simply return
False if the FIFO is empty.

Why does SFIFO include two methods find() and find2()? This so you can can search it twice
for instructions that have two operands. For instance, in the above example the execute rule can
check if r5 is in the writebackQ using find(), and r6 using find2(). However if the instruction
had been xori instead of xor, it just would have used find() because xori just has one register
argument.

What type should you store in the writeback queue and how should you search it? First let us
consider what the result of the execute stage should be. If the instruction was an ALU operation,
then the result should be the destination register and the data to put into it. If it was a Load, then
we need the destination register to put the response from memory into. If it was a store then we
need to record this fact so we can receive the acknowledgment from memory. Finally let’s treat the
From Host register specially.

typedef union tagged

{

struct {Bit#(32) data, Rindx dest} WB_ALU;

Bit#(32) WB_Host;

Rindx WB_Load;

void WB_Store;

}

WBResult deriving (Eq, Bits);

Now you must define what it means to search the FIFO by writing a function. This function should
take an Rindx (the thing we’re looking for) and a WBResult (the elements through which we are
searching). The function should return true if the search value is “found” in the given FIFO element.

function Bool findf(Rindx searchval, WBResult val);

//You write this

endfunction

When you instantiate the SFIFO, you should pass in the appropriate types and find function. What
does it mean to pass in a function to a hardware module in Bluespec? Essentially it means that
when the compiler instantiates the module it will do so with the combinational logic you provide.
Think of the SFIFO as a black box — a black box with a hole in it. The function you provide fills
that hole.

Thus the types of the writeback queue is as follows:

//Searchable for stall signal

SFIFO#(WBResult, Rindx) wbQ <- mkSFIFO(findf);

All in all, the best way to encapsulate the stall signal is probably by writing a function called
stallfunc(). stallfunc() takes an instruction and an SFIFO and returns False if can be executed,
and True if it must stall.

So your design will probably look something like this:
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function Bool stallfunc(Instr inst, SFIFO#(WBResult, Rindx) f);

... //You write this ...

endfunction

module mkProc (Proc);

... //State elements ...

rule execute (instRespQ.first() matches tagged LoadResp .ld

&&& unpack(ld.data) matches .inst

&&& !stallfunc(inst, wbQ));

...

case (inst) matches //Execute the instruction

tagged LW .it:

...

endrule

4.2 Dealing with Branches

You may have noticed that branches are resolved in the Execute stage. Why is this a problem?
Because if the branch has been taken (or, with a branch predictor, if the branch has been mispre-
dicted) then the pcGen stage has made a memory request for an instruction which we must ignore.
(In a design with a non-blocking cache it may even have made more than one.) There are many
ways to handle this, but the simplest way is to use an epoch.

An epoch is a conceptual grouping of all instructions in-between branch mispredictions. We can
track this by having the pcGen rule send the epoch as the tag for all load requests:

rule pcGen ...

...

instReqQ.enq( Load{ addr:pc, tag:epoch } );

...

endrule

Note that this is okay because our memory system is in-order, so the tag is essentially unused. If
the memory system was allowed to respond out-of-order then we would have to actually create an
appropriate tag to differentiate responses. In this case we could devote some bits of the tag field
to the epoch, and some to the tag itself. For instance, the eight-bit field could be used to store a
three-bit epoch, and a five-bit tag — but we do not need to worry about this for this lab.

When a mispredict occurs we clear all queues which are holding instructions issued after the branch
instruction, and increment the epoch. Then we have a separate rule that discards responses from
the wrong epoch.

rule discard ( instRespQ.first() matches tagged LoadResp .ld

&&& ld.tag != epoch);

traceTiny("mkProc" "stage","D");

instRespQ.deq();

endrule

Now when we execute we must check that we can execute the instruction, and that it is from the
correct epoch:
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rule execute (instRespQ.first() matches tagged LoadResp .ld

&&& ld.tag == epoch

&&& unpack(ld.data) matches .inst

&&& !stall(inst, wbQ));

...

Bool branchTaken = False;

Addr newPC;

...

if (branchTaken)

begin

//Clear appropriate FIFOs here

epoch <= epoch + 1;

pc <= newPC;

...

5 Achieving Pipeline Performance

Now that you have a working design, it is time to specialize the state elements (FIFOs and register
files) to have the desired scheduling. Below we discuss some of the useful approaches to help you
reason about scheduling and the resulting performance.

5.1 Using the Scheduler Output

As you begin to refine your design, pay close attention to the output of the Bluespec compiler (output
to build/default/<design-name>/pm/hw/model/connected application/.bsc/mk connected
application Wrapper.sched). Sometimes rule conflicts can point to a bug in the design. For
example, you could have a conflict between execute and writeback rules, from neglecting to change
one leg of the execute case statement, so it was still updating the register file directly. viewing the
schedule and seeing the conflict would make it clear that something must be wrong.

This file is quite verbose, so a little explanation is in order. The rule names change slightly since we
have removed all synthesis boundaries, but will always end with the original string which appeared in
your BSV source. For example, the rule pcgen will appear as m core proc pcgen, which reflects the
flattened bluespec module hierarchy. The file contains one entry for each rule, which lists the rule’s
predicate, and any blocking rules. Pay close attention to the predicate as you may have invoked a
method with an implicit condition which you didn’t count on. The predicate listed here includes all
lifted implicit conditions.

At the bottom of this file is a list called “Logical Order”. This lists the final global ordering of
all the rules. Let’s review a few scheduling terms before discussing how exactly to interpret this
list. The term urgency refers to the relative priority given to two conflicting rules by the bluespec
compiler. If two rules conflict the “more urgent” rule will fire if it’s guard is true, blocking the firing
of the “less urgent” rule. The term earliness is used to describe the logical ordering assigned by
the bluespec compiler to two rules which don’t conflict. If rules A and B are sequential composable,
(A before B), then A will appear to fire before B; a will be “earlier” than B, and appear before
B in the logical ordering of rules. If A and B are conflict free, the Bluespec compiler makes an
arbitrary choice in assigning relative earliness to the two rules. Relative urgency and earliness can
be set by using the pragmas descending urgency and descending earliness, which are described in
the Bluespec user guide.

This information will become even more important as you begin to change your FIFOs to improve
throughput. Long FIFOs will tend to “decouple” rules so that they become more independent.
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FIFO Variant Package Size Sched Comment

mkFIFO() FIFO 2 deq < enq Default. Use this to get your design working. deq and enq

may happen simultaneously when contains 1 element

mkFIFO1() FIFO 1 deq ME enq deq if full, enq if empty. Mutually exclusive.

mkSizedFIFO(n ) FIFO n deq < enq deq and enq may happen simultaneously when neither

full nor empty

mkLFIFO() FIFO 1 deq < enq deq and enq may happen simultaneously when full

mkBFIFO() BFIFO 1 enq < deq If enq and deq happen when empty, value is bypassed

mkSizedBFIFO(n ) BFIFO n enq < deq A larger buffer for when no deq happens

mkSFIFO() SFIFO 1 deq < find < enq Uses SFIFO interface. Properties are like mkFIFO

mkSizedSFIFO(n ) SFIFO n deq < find < enq Uses SFIFO interface. Properties are like mkSizedFIFO

Figure 5: Properties of various FIFO modules. For all FIFOs: first < (enq, deq) < clear.

Shorter FIFOs will do the opposite, as the rules will interact through the state elements directly.

5.2 Considering different FIFOs

In Figure 4 we represent all FIFOs in the design with the same picture. In reality, in order to achieve
good throughput you will need to (a) appropriately size all FIFOs and (b) ensure that they have
the correct scheduling properties to ensure maximum concurrency between rules. To this end we
are providing you with libraries for the special FIFOs in addition to the standard library FIFOs.

With the exception of SFIFO and BFIFO, all the different flavors of FIFOs listed in the table in
Figure 5 are part of the standard bluespec library and are documented in the language reference.
SFIFO and BFIfO are implemented in the files SFIFO.bsv and BFIfO.bsv respectively. You can
find these files in the lab4 modules directory (the location of the original processor module).

The properties of various FIFOs are given in Figure 5. When choosing a FIFO remember to consider
both its size, and its scheduling properties. What case do you expect to be the most common?
How does the memory latency affect things? Is extra area and an extra cycle of latency worth an
improvement in throughput? Be sure to run the benchmark suite and examine which rules fire to
check how your change impacts throughput.

Sometimes there may be places where you wish no FIFO existed at all, i.e.,a wire. The problem with
such a combinational structure is that you must be able to guarantee that your rules will always fire
when values are on the wire — no communication should be dropped under any circumstance. Rather
than making you reason in such a way for this lab, we are providing you with a safer abstraction:
mkBFIFO1(), a Bypass FIFO. This FIFO behaves like a wire (enq() before deq()) as long as both
occur. Otherwise the value is buffered in the FIFO, so the deq() can occur later. You should ensure
that your design is functionally correct with normal FIFOs before you attempt to introduce Bypass
FIFOs.

5.3 Sizing FIFOs

Although the scheduling properties of the FIFOs are important, so too is their length. For instance,
consider the pcQ FIFO. At the beginning of time it starts out empty, then the pcGen rule enqueues
into it, and makes a memory request. Well, even if the memory request comes back the following
cycle because of a cache hit, the response still has to go into the instRespQ. Therefore it seems that
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making the pcQ smaller than size 2 will restrict the parallelism of your processor by limiting the
number of instructions in flight.

Although it is possible to find a good configuration using an experimental approach, reasoning about
the system using high-level knowledge can point you towards the optimum configuration. Always
check the effect of your changes on the generated schedule.

5.4 Adding a Bypass register file

We have one more conflict which needs to be resolved. Consider the interaction between the write-
back and execute rules. They interact through two pieces of hardware: namely the register file
and the writeback queue. The writeback rule dequeues from the writeback queue, and writes to
the register file, while the execute rule reads from the register file, and enqueues (and searches) to
the writeback queue. The compiler schedules the SFIFO methods first and dequeue before the
methods find and enqueue. The register file method read is scheduled before write. Clearly we
have a conflict here: if the execute and writeback rules cannot fire in the same cycle, we will never
get full throughput of our pipeline.

The solution here is to devise a new register file which schedules reads before writes, and which
bypasses written data if a simultaneous read address corresponds to the write address. Using a
pair of RWires and a conflict-free register file (mkRegFileWCF) you should be able to devise a new
register file with the behavior described above. In the introduction we discouraged you from using
RWires directly in your design. Make an exception here.

5.5 Adding a Branch Predictor

Now that you have a high-performance design you will now further improve it by improving the
manner in which we speculatively fetch instructions. To do this we will add a simple branch predictor
to our design or more accurately, we will improve our branch predictor from one that just guesses
not taken pc + 4 to one which can remember old branch statements.

One purpose of this task is to think about designing modules from scratch and then effectively using
them. This should be relatively simple, and can be completed with the following guidelines:

• First we must consider what the methods we want the branch predictor to have. The most
obvious case would be that there must be a way to query the predictor to see if we have a
prediction to make (other than the default pc + 4). Second, we need a way of teaching the
predictor what the correct prediction should be. To do this we should have an update method
which sends in two address, the address of the branch and the correct next pc value (for this
execution of the instruction). Formalize these two methods into the BranchPredictor interface.

• Now that you’ve determined the external “shape” of your branch predictor it’s time to deter-
mine the body of the design. While you are allowed to implement any algorithm you want.
However, we suggest that you keep it simple and merely use a simple branch target buffer
(BTB) to remember when we have seen a branch instruction and what it’s result was. Ideally,
this is just a big array which holds every possible address and the last prediction (defaulting
to pc + 4). Of course, you cannot fit 232 address so you will need to keep a cache. A small
direct-mapped cache (of say 16 elements) should be pretty good. Remember that the bottom
2-bits of the address will always be zero so you should use the next few bits indexing into the
cache.
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• Now that you’ve picked out the behavior you must change the way that your pipeline works.
The Fetch rule should make use of the prediction method and the execute rule should update
the table when a misprediction is made. This should be quite straightforwards.

• Now as in the pipelining step you should implement your design, ignoring the performance
of the predictor, and focusing only on it’s correctness. Once you believe your design is correct,
consider the scheduling of the methods in your design. What order must the methods execute
in each cycle for the desired parallelism. Is it okay for predictions not to be made when you
send updates to the predictor? If you decide both must happen concurrently, is it okay for the
predictor not to observe the new branch update before it makes it’s predicition?

• Now that you have completed the design, rerun the benchmarks and see how the design
changed. How has the IPC numbers changed?

6 Critical Thinking Questions

The primary deliverable for this lab assignment is your working Bluespec source code for the pipelined
SMIPSv2 processor. In addition, you should prepare written answers to the following questions and
in a file called questions.txt, and check them into your lab4 modules directory in SVN.

Question 1: IPC

List the IPC of your design for each of the provided benchmarks. In our reference design we have
generated the following target IPC’s. You should get close, or perhaps even surpass these numbers!

median: 0.46
multiply: 0.33

qsort: 0.48
towers: 0.47
vvadd: 0.46

Compare the results of your processor with branch prediction to the one without it. If your design
is correctly pipelined, you should be able to obtain approximately the following IPCs:

How much does the IPC improve on average? Can you estimate what how your branch prediction
rate improved with the new predictor?

Question 2: Design Choices

Discuss and motivate any design choices you made. Is there any way in which your implementation
differs from the diagram in Figure 4? What FIFOs did you end up using, and why is this a good
configuration? What is the relationship between your Execute and Writeback rules? Are they
conflict-free, sequentially composable, or Conflicting? Why has the scheduler deduced this?
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Question 3: Synthesizing Bluespec by Hand

Ben Bitdiddle is writing a 32-bit barrel shifter in Bluespec. The module can take any 32-bit number
and shift it right or left by any amount. To minimize area Ben decides to implement the design
using a circular shifter and a counter.

Unfortunately, Ben accidentally forgets to write predicates for his rules:

typedef enum { Left, Right} Direction;

module mkBarrelShifter (Shifter);

Reg#(Bit#(32)) r <- mkReg(0);

Reg#(Bit#(5)) cnt <- mkReg(0);

Reg#(Direction) dir <- mkRegU();

rule shiftLeft (True);

r <= r << 1;

cnt <= cnt - 1;

endrule

rule shiftRight (True);

r <= r >> 1;

cnt <= cnt - 1;

endrule

method Action shift(Direction d, Bit#(32) data, Bit#(5) amt) if (cnt == 0);

dir <= d;

r <= data;

cnt <= amt;

endmethod

method Bit#(32) result() if (cnt == 0);

return r;

endmethod

endmodule

What schedule will the compiler deduce for Ben’s design? (If you must make a choice at some point
make it arbitrarily.) What hardware will the compiler generate? Diagram the resulting datapath,
clearly labeling which part corresponds to the scheduling logic.

What predicates should Ben have provided? How do they change the schedule? Redraw the correct
datapath which will result, again highlighting the scheduling logic.

Note that we understand that you could do this problem by typing the code into the compiler and
seeing what happens. You could even base your diagram on the resulting Verilog!

Question 4: Area/Performance Tradeoff

List the increase in FPGA resource usage between the original microarchitecture and your pipelined
refinement. Do you think the improved performance (IPC) is worth the increased area? While it is
probable that you are able to clock both designs at 50 MHz, it is easy to imagine that your refinement
will in reality be able to run at a slower frequency than the original due to the combinational paths
introduced through the BFIFOs and SFIFOs. Use the average IPC of both microarchitectures to
compute the slowest frequency at which your pipelined refinement must run in order to have better
absolute performance (instructions per second), assuming the original can be clocked at 100 MHz.
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7 Appendix A

31 26 25 21 20 16 15 11 10 6 5 0

opcode rs rt rd shamt funct R-type
opcode rs rt immediate I-type
opcode target J-type

Load and Store Instructions
100011 base dest signed offset LW rt, offset(rs)
101011 base dest signed offset SW rt, offset(rs)

I-Type Computational Instructions
001001 src dest signed immediate ADDIU rt, rs, signed-imm.
001010 src dest signed immediate SLTI rt, rs, signed-imm.
001011 src dest signed immediate SLTIU rt, rs, signed-imm.
001100 src dest zero-ext. immediate ANDI rt, rs, zero-ext-imm.
001101 src dest zero-ext. immediate ORI rt, rs, zero-ext-imm.
001110 src dest zero-ext. immediate XORI rt, rs, zero-ext-imm.
001111 00000 dest zero-ext. immediate LUI rt, zero-ext-imm.

R-Type Computational Instructions
000000 00000 src dest shamt 000000 SLL rd, rt, shamt
000000 00000 src dest shamt 000010 SRL rd, rt, shamt
000000 00000 src dest shamt 000011 SRA rd, rt, shamt
000000 rshamt src dest 00000 000100 SLLV rd, rt, rs
000000 rshamt src dest 00000 000110 SRLV rd, rt, rs
000000 rshamt src dest 00000 000111 SRAV rd, rt, rs
000000 src1 src2 dest 00000 100001 ADDU rd, rs, rt
000000 src1 src2 dest 00000 100011 SUBU rd, rs, rt
000000 src1 src2 dest 00000 100100 AND rd, rs, rt
000000 src1 src2 dest 00000 100101 OR rd, rs, rt
000000 src1 src2 dest 00000 100110 XOR rd, rs, rt
000000 src1 src2 dest 00000 100111 NOR rd, rs, rt
000000 src1 src2 dest 00000 101010 SLT rd, rs, rt
000000 src1 src2 dest 00000 101011 SLTU rd, rs, rt

Jump and Branch Instructions
000010 target J target
000011 target JAL target
000000 src 00000 00000 00000 001000 JR rs
000000 src 00000 dest 00000 001001 JALR rd, rs
000100 src1 src2 signed offset BEQ rs, rt, offset
000101 src1 src2 signed offset BNE rs, rt, offset
000110 src 00000 signed offset BLEZ rs, offset
000111 src 00000 signed offset BGTZ rs, offset
000001 src 00000 signed offset BLTZ rs, offset
000001 src 00001 signed offset BGEZ rs, offset

System Coprocessor (COP0) Instructions
010000 00000 dest cop0src 00000 000000 MFC0 rt, rd
010000 00100 src cop0dest 00000 000000 MTC0 rt, rd

Figure 6: SMIPSv2 Instruction Set
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