
Quiz 2	Subject	Professor	Student ID#	Student Name	Score
Date: 2009.09.16	Microelectronics 2	Jong-Ho Lee			

1. Assume that each odd-numbered MOS transistor on left path of telescopic differential pair in the circuit shown below has the same properties as each even-numbered MOS transistors on the right path. For example, M_1 and M_2 are symmetric, and this relation is valid for other transistor pairs. Resistors R_1 and R_2 are also symmetric. Tail current source is ideal. All transistors have an output resistance r_0 due to a finite Early voltage V_A . Answer for the following questions.

(a) Compute the differential gain of the circuit. R_1 (= R_2) can have an arbitrary resistance value.

Answer)

Using half circuit analysis,

 $R_{op} = R_1//r_{o5} + r_{o7}\{1 + g_{m5}(R_1//r_{o5})\}$

 $\approx \text{ro7gm5}(\text{R}1//\text{ro5})$

Ron = ro3 + ro1(1+gm3ro3)

 \approx ro1gm3ro3

Av = -gm1(Rop//Ron)

(gm1 = gm2, gm3 = gm4, gm5 = gm6, gm7 = gm8)

(ro1 = ro2, ro3 = ro4, ro5 = ro6, ro7 = ro8)

(b) Repeat (a) when R_1 (= R_2) is infinite.

Answer)

$$\begin{split} Rop &\approx ro7gm5ro5~(~R1(=&R2) = \infty~)\\ Av &= -gm1(Rop//Ron) = -gm1(Ron//~ro7gm5ro5) \end{split}$$

(c) Calculate the differential gain when R_1 (= R_2) is 0 Ω , and pMOSFETs M_7 and M_8 are changed to nMOSFETs. Assume that $r_{\rm o} >> 1/g_{\rm m}$.

Answer)

R1(=R2) = 0 means R1(=R2) path will be short and so M5(M6) will be negligible.

M7(=M8) => nMOSFET means the output impedance in M7(=M8)

is
$$\frac{1}{g_{m7}}(\frac{1}{g_{m8}}) \| r_{o7}(r_{o8}) \cdot$$

Rop =
$$\frac{1}{g_{m7}} (r_o \gg 1/g_m)$$

Ron $\approx \text{ro1gm3ro3}$

Root = Rop//Ron
$$\approx \frac{1}{g_{m7}} (r_o \gg 1/g_m)$$

$$A_{v} = -g_{m1} \frac{1}{g_{m7}} = -\frac{g_{m1}}{g_{m7}}$$