School of Electrical Engineering and Computer Science, Seoul National University

(a) Compute the differential gain of the circuit. $R_{1}\left(=R_{2}\right)$ can have an arbitrary resistance value.

Answer)

Using half circuit analysis,
Rop $=\mathrm{R} 1 / / \mathrm{ro5}+\operatorname{ro7}\{1+\mathrm{gm} 5(\mathrm{R} 1 / / \mathrm{ro5})\}$
$\approx \operatorname{ro7gm} 5(\mathrm{R} 1 / / \mathrm{ro5})$
Ron $=r o 3+r o 1(1+\mathrm{gm} 3 \mathrm{ro} 3)$
\approx ro1gm3ro3
$\mathbf{A v}=-\mathrm{gm} 1\left(\right.$ Rop $\left./ / \mathrm{Ron}_{\mathrm{on}}\right)$
$(\mathrm{gm} 1=\mathrm{gm} 2, \mathrm{gm} 3=\mathrm{gm} 4, \mathrm{gm} 5=\mathrm{gm} 6, \mathrm{gm} 7=\mathrm{gm} 8)$
$(\mathrm{ro} 1=\mathrm{ro2}, \mathrm{ro3}=\mathrm{ro4}, \mathrm{ro5}=\mathrm{ro6}, \mathrm{ro7}=\mathrm{ro8})$
(b) Repeat (a) when $R_{1}\left(=R_{2}\right)$ is infinite.

Answer)

Rop $\approx \operatorname{ro7gm5ro5}(\mathrm{R} 1(=\mathrm{R} 2)=\infty)$
$A v=-\mathrm{gm} 1($ Rop $/ / R o n)=-\mathrm{gm} 1($ Ron $/ /$ ro7gm5ro5 $)$
(c) Calculate the differential gain when $R_{1}\left(=R_{2}\right)$ is 0Ω, and pMOSFETs M_{7} and M_{8} are changed to nMOSFETs. Assume that $r_{\mathrm{o}} \gg 1 / g_{\mathrm{m}}$.

Answer)

$\mathrm{R} 1(=\mathrm{R} 2)=0$ means $\mathrm{R} 1(=\mathrm{R} 2)$ path will be short and so M5(M6) will be negligible.
$\mathrm{M} 7(=\mathrm{M} 8)=>$ nMOSFET means the output impedance in M7(=M8)
is $\frac{1}{g_{m 7}}\left(\frac{1}{g_{m 8}}\right) \| r_{o 7}\left(r_{o 8}\right)$.
Rop $=\frac{1}{g_{m 7}}\left(r_{o} \gg 1 / g_{m}\right)$
Ron \approx ro1gm3ro3
Rout $=\operatorname{Rop} / / \operatorname{Ron} \approx \frac{1}{g_{m 7}} \quad\left(r_{o} \gg 1 / g_{m}\right)$
$A_{v}=-g_{m 1} \frac{1}{g_{m 7}}=-\frac{g_{m 1}}{g_{m 7}}$

Use front side only

