School of Electrical Engineering and Computer Science, Seoul National University

Quiz 5	Subject	Professor	Student ID#	Student Name	Score
Date: 2009.10.7	Microelectronics 2	Jong-Ho Lee			
1. Assume that MOS transistor M_2 has no back-bias effect (γ =0, g_{mb} =0). It is also assumed that g_{m1} is equal to g_{m2} . All transistors have infinite output resistance (λ =0). Answer for the following questions.			(c) Compare the pole frequencies at node X in (a) and (b). (2)Answer)Compared with the Miller approximation results obtained in (a),		
			the input pole in (b) has risen considerably. $(g_m R_L \gg 1)$		

 $\therefore w_{p,X} < w_{p,X}$

(a) Compute the pole frequencies at nodes X, Y, and output when R is 0 Ω . Consider transistor capacitances in the calculation of the pole frequencies. (4)

Answer)

When R is 0Ω , M_2 is negligible. Besides, the node Y is the same as node output. We can obtain a low frequency gain, $A_v = -g_{m1}R_L(r_{o1} = \infty)$. Using Miller's Theorem, $C_X = C_{GS1} + (1 + g_{m1}R_L)C_{GD1}$

$$C_{Y} = C_{DB1} + (1 + \frac{1}{g_{m1}R_{L}})C_{GD1} = C_{out}$$
$$w_{p,X} = \frac{1}{R_{s}C_{X}} , w_{p,Y}(=w_{p,out}) = \frac{1}{R_{L}C_{Y}}$$

(b) Repeat (a) when R is infinite. (4)

Answer)

When R is infinite, a low frequency gain from X to Y is

$$A_{v} = -g_{m1} \frac{1}{g_{m2}} \cong -1 \quad (r_{o1}, r_{o2} = \infty, g_{m1} = g_{m2}).$$

$$C_{X}' = C_{GS1} + (1+1)C_{GD1} = C_{GS1} + 2C_{GD1}$$

$$C_{Y}' = C_{DB1} + C_{GS2} + 2C_{GD1} + C_{SB2}$$

$$C_{out}' = C_{GD2} + C_{DB2}$$

$$w_{p,X}' = \frac{1}{R_{s}C_{X}'} + w_{p,Y}' = \frac{1}{\frac{1}{g_{m2}}C_{Y}'} + w_{p,out}' = \frac{1}{R_{L}C_{out}'}$$