School of Electrical Engineering and Computer Science, Seoul National University

Quiz 11	Subject	Professor	Student ID#	Student Name	Score
Date: 2009.11.25	Microelectronics 2	Jong-Ho Lee			

1. Following figure depicts an inverter. Assume all op amps are ideal. Answer for the following questions.

$$I_{D,lin} = \mu_n C_{ox} \frac{W}{L} [(V_{GS} - V_{TH})V_{DS} - \frac{V_{DS}^2}{2}]$$

$$I_{D,sat} = \mu_n C_{ox} \frac{W}{2L} (V_{GS} - V_{TH})^2$$

$$V_{in} = \int_{C_L} \int$$

(a) When the V_{in} is V_{DD} , V_{out} is very close to 0 V. In this case, calculate approximately the channel resistance of transistor M1. (3)

Answer)

When V_{in} is V_{DD} , M_1 is in a triode region. $[V_{DS1} < V_{GS1} - V_{TH1}]$

$$I_{D} \approx \mu_{n} C_{OX} \frac{W}{L} (V_{GS1} - V_{TH1}) V_{DS1}$$

$$R_{on1} = \frac{V_{DS1}}{I_{D1}} = \frac{1}{\mu_{n} C_{oX} \frac{W}{L} (V_{GS1} - V_{TH1})}$$
Therefore, When $V_{in} = V_{DD}$,
$$R_{on1} = \frac{1}{\mu_{n} C_{oX} \frac{W}{L} (V_{DD} - V_{TH1})}$$

(b) An NMOS inverter drives a load capacitor $C_{\rm L}$ as depicted in above figure. Determine the time constant at output node when $V_{\rm out}$ goes from low to high. Assume $R_{\rm D}$ is 20 $R_{\rm on1}$. Here $R_{\rm on1}$ is the channel resistance of transistor M1 when it is turned on. (4)

Answer)

When the input to an NMOS inverter jumps from V_{DD} to 0, V_{out} goes from low to high.

2. Using M2 and $R_{\rm S}$ below, we can implement an inverter. Plot schematically the voltage transfer characteristic of the inverter in the figure on the right side. Assume the threshold voltage of PMOS M2 is 0.25 $V_{\rm DD}$. Assume $R_{\rm S}$ is 19× $R_{\rm on2}$. (3)

Assume V_{in} varies from V_{DD} to 0. i) For $V_{DD} - |V_{TP}| < V_{in} \le V_{DD}$ (0.75 $V_{DD} < V_{in} \le V_{DD}$), M₂ remains off and <u>Vout=0</u>. (logical ZERO)

ii) As V_{in} decreases less than $V_{DD} - |V_{TP}|$, M₂ turns on and V_{out} begins to rise. (M₂ is in a saturation region)

$$V_{out} = I_D R_s$$

= $\frac{1}{2} \mu_p C_{ox} \frac{W}{L} R_s (V_{DD} - V_{in} - |V_{TP}|)^2$

iii) As the input decreases further, V_{out} rises, eventually driving into the triode region for $V_{out} \ge V_{in} - |V_{TP}| \cdot (V_{SD} \le V_{SG} - |V_{TP}|)$ As V_{in} decreases less than $V_{out} - |V_{TP}|$, V_{out} continues to rise,

Reaching its highest level for $V_{in}=0$.

$$V_{out,\max} = R_s I_{D,\max}$$

= $\frac{1}{2} \mu_p C_{ox} \frac{W}{L} R_s \Big[2(V_{DD} - |V_{TP}|)(V_{DD} - V_{out,\max}) - (V_{DD} - V_{out,\max})^2 \Big]$
= $\frac{19}{2} \mu_p C_{ox} \frac{W}{L} R_{on2} \Big[2(V_{DD} - |V_{TP}|)(V_{DD} - V_{out,\max}) - (V_{DD} - V_{out,\max})^2 \Big]$
 $\approx 19(V_{DD} - V_{out,\max})$
 $\therefore V_{out,\max} \approx 0.95V_{DD}$