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Solution of homework I

Note that solutions for Exercise 2.19 (c) and (d) are incomplete.

Problem 0.1. (Text, 2.1) When k = 2, it holds by definition of convexity. Suppose that
when k < n, by induction hypothesis, λ1x1 + · · ·+ λkxk ∈ C. Then,

λ1x1 + · · ·+ λkxk + λk+1xk+1 = (λ1 + · · ·+ λk)(
1

λ1+···+λk
(λ1x1 + · · ·+ λkxk)) + λk+1xk+1

By the induction hypothesis, ( 1
λ1+···+λk

(λ1x1 + · · · + λkxk)) ∈ C, and the definition of con-

vexity, (λ1 + · · ·+ λk)(
1

λ1+···+λk
(λ1x1 + · · ·+ λkxk)) + λk+1xk+1 ∈ C.

Problem 0.2. (Text, 2.2)

(a) C is convex set ⇒ Since any line is convex, the intersection of C and a line is convex.

(b) The intersection of any line and C is convex ⇒ C is convex set: Suppose that C is
not convex. Then, there exist x, y ∈ C and λ ∈ [0, 1] such that (1 − λ)x + λy /∈ C.
Consider the line L through x and y. Since x, y ∈ C ∩ L, by convexity of C ∩ L,
(1− λ)x + λy ∈ C ∩ L, but (1− λ)x + λy /∈ C. A contradiction.

(c) A set is affine iff its intersection with any line is affine: Similar to (a) and (b).

Problem 0.3. (Text, 2.9)

(a) For any x0 and xi,

‖x− x0‖2 ≤ ‖x− xi‖2 ⇐⇒ (x− x0)
T (x− x0) ≤ (x− xi)

T (x− xi)

⇐⇒ 2(xi − x0)
T x ≤ xT

i xi − xT
0 x0

Let us denote 2(xi − x0) by ai and xT
i xi − xT

0 x0 by bi. Then, V = {x ∈ Rn|ax
i ≤ bi, i =

1, . . . , K}, which is a polyhedron. If we express V in the form V = {x|Ax ¹ b}, then

A =




2(x1 − x0)
T

...
2(xK − x0)

T


 and b =




xT
1 x1 − xT

0 x0
...

xT
KxK − xT

0 x0


 .

(b) Suppose that x0 is an any interior point in P . Since P is an intersection of finite number,
say K, of halfspaces, P = {x|(ai)T x ≤ bi, i = 1, . . . , K} we can define x1, . . . , xK as
follows: for i = 1, . . . , K, xi is plane-symmetry point of x0 w.r.t the ith hypeplane
{x|(ai)T x = bi}. Then, ith halfspace of P can be represented as {x|‖x − x0‖2 ≤
‖x− xi‖2}.
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(c) Consider the polyhedral decomposition of R such that

V0 = {x|x ≤ −6}, V1 = {x| − 6 ≤ x ≤ −4}, V2 = {x| − 4 ≤ x ≤ 4},
V3 = {x|4 ≤ x ≤ 6}, V4 = {x|x ≥ 6}.

Then, we must have

(i) −6 < x1 < −4, 4 < x3 < 6.

(ii) −4− x1 = x2 − (−4) ⇒ x2 = −8− x1.

(iii) x3 − 4 = 4− x2 ⇒ x2 = 8− x3.

However, (i) and (ii) implies −4 < x2 < −2 and (i) and (iii) implies 2 < x2 < 4, a
contradiction. Thus, we cannot determine x3 for a given partition of R.

Problem 0.4. (Text, 2.10)

(a) C is convex if λx1 + (1− λ)x2 ∈ C for any x1, x2 ∈ C and any λ ∈ [0, 1]. We need to
show that

(λx1 + (1− λ)x2)
T A(λx1 + (1− λ)x2) + bT (λx1 + (1− λ)x2) + c ≤ 0.

From the following calculation, we can conclude that λx1 + (1 − λ)x2 ∈ C for any
λ ∈ [0, 1]:

(λx1 + (1− λ)x2)
T A(λx1 + (1− λ)x2) + bT (λx1 + (1− λ)x2) + c

= λ2xT
1 Ax1 + (1− λ)2xT

2 Ax2 + λ(1− λ)xT
1 Ax2 + λ(1− λ)xT

2 Ax1

+ λ(bT x1 + c) + (1− λ)(bT x2 + c)

= λ(xT
1 Ax1 + bT x1 + c) + (1− λ)(xT

2 Ax2 + bT x2 + c)

− λ(1− λ)(x2 − x1)
T A(x2 − x1) ≤ 0.

since A º 0.

(b) Let K = {x ∈ Rn|xT Ax + bx + c ≤ 0} ∩ {x|gT x + h = 0} and consider any x1, x2 ∈ K
and any λ ∈ [0, 1]. First, λx1 + (1 − λ)x2 ∈ {x|gT x + h = 0} is obvious. Second,
since gT x1 + h = 0 and gT x2 + h = 0, gT (x2 − x1) = 0. Moreover, for all z ∈ Rn,
zT (A + µggT )z = zT Az + (gT z)2 ≥ 0, so −zT Az ≤ (gT z)2. Therefore,

(λx1 + (1− λ)x2)
T A(λx1 + (1− λ)x2) + bT (λx1 + (1− λ)x2) + c

= λ(xT
1 Ax1 + bT x1 + c) + (1− λ)(xT

2 Ax2 + bT x2 + c)

− λ(1− λ)(x2 − x1)
T A(x2 − x1)

≤ λ(xT
1 Ax1 + bT x1 + c) + (1− λ)(xT

2 Ax2 + bT x2 + c)

− λ(1− λ)(gT (x2 − x1))
2

= λ(xT
1 Ax1 + bT x1 + c) + (1− λ)(xT

2 Ax2 + bT x2 + c) ≤ 0

Thus, K is convex.
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Problem 0.5. (Text, 2.12)

(a) For x, y ∈ C := {x ∈ Rn|α ≤ aT x ≤ β} and 0 ≤ λ ≤ 1,

aT ((1− λ)x + λy) = (1− λ)aT x + λaT y ≥ (1− λ)α + λα = α

and
aT ((1− λ)x + λy) = (1− λ)aT x + λaT y ≤ (1− λ)β + λβ = β.

Thus, (1− λ)x + λy ∈ C.

(b) {x ∈ Rn|αi ≤ xi ≤ βi, i = 1, . . . , n} =
⋂

i{x ∈ Rn|αi ≤ eT
i x ≤ βi}. Thus, convex.

(c) {x ∈ Rn|aT
1 x ≤ b1, a

T
2 x ≤ b2} = {x ∈ Rn|aT

1 x ≤ b1} ∩ {x ∈ Rn|aT
2 x ≤ b2}. Thus,

convex.

(d) By definition, we have the following equivalent inequalities:

‖x− x0‖2 ≤ ‖x− y‖2 ⇐⇒ (x− x0)
T (x− x0) ≤ (x− y)T (x− y)

⇐⇒ 2(y − x0)
T x ≤ yT y − xT

0 x0

Therefore, {x|‖x − x0‖2 ≤ ‖x − y‖2, ∀y ∈ S} =
⋂

y∈S{x|2(y − x0)
T x ≤ yT y − xT

0 x0}.
Thus, convex.

(e) Consider the following counter example: Let S = {x ∈ R|x ≥ 1} ∪ {x ∈ R|x ≤ 0} and
T be the complement of S. Then,

S = {x|dist(x, S) ≤ dist(x, T )}.

But, S is not convex.

(f) {x|x + S2 ⊆ S1} =
⋂

y∈S2
{x|x ∈ S1 − y}. Since translation S1 − y preserves convexity,

{x|x ∈ S1 − y} is convex, and so is {x|x + S2 ⊆ S1}.
(g) When θ = 0 or θ = 1, it is easy to see that C = {x|‖x − a‖2 ≤ θ‖x − b‖2} is convex.

For 0 < θ < 1,

‖x− a‖2 ≤ θ‖x− b‖2 ⇔ (x− a)T (x− a) ≤ θ2(x− b)T (x− b)
⇔ (1− θ2)xT x− 2(a− θ2b)T x ≤ −aT a + θ2bT b

⇔ ‖x− a−θ2b
1−θ2 ‖2

2 ≤ (a−θ2b)T (a−θ2b)+(1−θ2)(−aT a+θ2bT b)
(1−θ2)2

=
θ2‖a−b‖22
(1−θ2)2

.

Thus, C is a ball, and hence convex.

Problem 0.6. (Text, 2.19)
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(a)
f−1(C) = {x ∈ domf |f(x) ∈ C}

= {x|cT x + d > 0, Ax+b
cT x+d

∈ C}
= {x|cT x + d > 0, gT Ax + gT b ≤ hcT x + hd}
= {x|cT x + d > 0, (AT g − hc)T x ≤ hd− gT b}.

(b)
f−1(C) = {x ∈ domf |f(x) ∈ C}

= {x|cT x + d > 0, Ax+b
cT x+d

∈ C}
= {x|cT x + d > 0, GAx + Gb ≤ hcT x + dh}
= {x|cT x + d > 0, (GA− hcT )x ≤ dh−Gb}.

(c)
f−1(C) = {x ∈ domf |f(x) ∈ C}

= {x|cT x + d > 0, Ax+b
cT x+d

∈ C}
= {x|cT x + d > 0, (Ax + b)T P−1(Ax + b) ≤ (cT x + d)2}
=??

(d)

f−1(C) = {x ∈ domf |f(x) ∈ C}
= {x|cT x + d > 0, Ax+b

cT x+d
∈ C}

= {x|cT x + d > 0, (Ax + b)1A1 + · · ·+ (Ax + b)nAn ¹ (cT x + d)B}
=??

Problem 0.7. (Text, 2.28)

(a) x1 is PDS iff x1 ≥ 0.

(b)

[
x1 x2

x2 x3

]
º 0 iff x1 ≥ 0, x3 ≥ 0, and x1x3 − x2

2 ≥ 0.

(c)




x1 x2 x3

x2 x4 x5

x3 x5 x6


 º 0 iff

x1 ≥ 0, x4 ≥ 0, x6 ≥ 0
x1x4 − x2

2 ≥ 0, x1x6 − x2
3 ≥ 0, x4x6 − x2

5 ≥ 0, and
x1(x4x6 − x2

5)− x2(x2x6 − x3x5) + x3(x2x5 − x3x4) ≥ 0.
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