Nonlinear programming

Optimization Lab.

2009

Yun-Hong Min

Solution of homework I

Note that solutions for Exercise 2.19 (c) and (d) are incomplete.

Problem 0.1. (Text, 2.1) When k = 2, it holds by definition of convexity. Suppose that when k < n, by induction hypothesis, $\lambda_1 x_1 + \cdots + \lambda_k x_k \in C$. Then,

$$\lambda_1 x_1 + \dots + \lambda_k x_k + \lambda_{k+1} x_{k+1} = (\lambda_1 + \dots + \lambda_k) \left(\frac{1}{\lambda_1 + \dots + \lambda_k} (\lambda_1 x_1 + \dots + \lambda_k x_k) \right) + \lambda_{k+1} x_{k+1}$$

By the induction hypothesis, $(\frac{1}{\lambda_1 + \dots + \lambda_k}(\lambda_1 x_1 + \dots + \lambda_k x_k)) \in C$, and the definition of convexity, $(\lambda_1 + \dots + \lambda_k)(\frac{1}{\lambda_1 + \dots + \lambda_k}(\lambda_1 x_1 + \dots + \lambda_k x_k)) + \lambda_{k+1} x_{k+1} \in C$.

Problem 0.2. (Text, 2.2)

- (a) C is convex set \Rightarrow Since any line is convex, the intersection of C and a line is convex.
- (b) The intersection of any line and C is convex $\Rightarrow C$ is convex set: Suppose that C is not convex. Then, there exist $x, y \in C$ and $\lambda \in [0, 1]$ such that $(1 \lambda)x + \lambda y \notin C$. Consider the line L through x and y. Since $x, y \in C \cap L$, by convexity of $C \cap L$, $(1 \lambda)x + \lambda y \in C \cap L$, but $(1 \lambda)x + \lambda y \notin C$. A contradiction.
- (c) A set is affine iff its intersection with any line is affine: Similar to (a) and (b).

Problem 0.3. (Text, 2.9)

(a) For any x_0 and x_i ,

$$||x - x_0||_2 \le ||x - x_i||_2 \iff (x - x_0)^T (x - x_0) \le (x - x_i)^T (x - x_i)$$

$$\iff 2(x_i - x_0)^T x \le x_i^T x_i - x_0^T x_0$$

Let us denote $2(x_i - x_0)$ by a_i and $x_i^T x_i - x_0^T x_0$ by b_i . Then, $V = \{x \in \mathbb{R}^n | a_i^x \leq b_i, i = 1, \ldots, K\}$, which is a polyhedron. If we express V in the form $V = \{x | Ax \leq b\}$, then

$$A = \begin{bmatrix} 2(x_1 - x_0)^T \\ \vdots \\ 2(x_K - x_0)^T \end{bmatrix} \text{ and } b = \begin{bmatrix} x_1^T x_1 - x_0^T x_0 \\ \vdots \\ x_K^T x_K - x_0^T x_0 \end{bmatrix}$$

(b) Suppose that x_0 is an any interior point in P. Since P is an intersection of finite number, say K, of halfspaces, $P = \{x | (a^i)^T x \leq b^i, i = 1, ..., K\}$ we can define $x_1, ..., x_K$ as follows: for i = 1, ..., K, x_i is plane-symmetry point of x_0 w.r.t the *i*th hypeplane $\{x | (a^i)^T x = b^i\}$. Then, *i*th halfspace of P can be represented as $\{x | \|x - x_0\|_2 \leq \|x - x_i\|_2\}$. (c) Consider the polyhedral decomposition of \mathbb{R} such that

$$V_0 = \{x | x \le -6\}, V_1 = \{x | -6 \le x \le -4\}, V_2 = \{x | -4 \le x \le 4\},$$
$$V_3 = \{x | 4 \le x \le 6\}, V_4 = \{x | x \ge 6\}.$$

Then, we must have

- (i) $-6 < x_1 < -4, 4 < x_3 < 6.$
- (ii) $-4 x_1 = x_2 (-4) \Rightarrow x_2 = -8 x_1.$
- (iii) $x_3 4 = 4 x_2 \Rightarrow x_2 = 8 x_3$.

However, (i) and (ii) implies $-4 < x_2 < -2$ and (i) and (iii) implies $2 < x_2 < 4$, a contradiction. Thus, we cannot determine x_3 for a given partition of \mathbb{R} .

Problem 0.4. (Text, 2.10)

(a) C is convex if $\lambda x_1 + (1 - \lambda)x_2 \in C$ for any $x_1, x_2 \in C$ and any $\lambda \in [0, 1]$. We need to show that

$$(\lambda x_1 + (1 - \lambda)x_2)^T A(\lambda x_1 + (1 - \lambda)x_2) + b^T(\lambda x_1 + (1 - \lambda)x_2) + c \le 0.$$

From the following calculation, we can conclude that $\lambda x_1 + (1 - \lambda)x_2 \in C$ for any $\lambda \in [0, 1]$:

$$\begin{aligned} &(\lambda x_1 + (1 - \lambda)x_2)^T A(\lambda x_1 + (1 - \lambda)x_2) + b^T (\lambda x_1 + (1 - \lambda)x_2) + c \\ &= &\lambda^2 x_1^T A x_1 + (1 - \lambda)^2 x_2^T A x_2 + \lambda (1 - \lambda) x_1^T A x_2 + \lambda (1 - \lambda) x_2^T A x_1 \\ &+ &\lambda (b^T x_1 + c) + (1 - \lambda) (b^T x_2 + c) \\ &= &\lambda (x_1^T A x_1 + b^T x_1 + c) + (1 - \lambda) (x_2^T A x_2 + b^T x_2 + c) \\ &- &\lambda (1 - \lambda) (x_2 - x_1)^T A (x_2 - x_1) \le 0. \end{aligned}$$

since $A \succeq 0$.

(b) Let $K = \{x \in \mathbb{R}^n | x^T A x + bx + c \leq 0\} \cap \{x | g^T x + h = 0\}$ and consider any $x_1, x_2 \in K$ and any $\lambda \in [0, 1]$. First, $\lambda x_1 + (1 - \lambda) x_2 \in \{x | g^T x + h = 0\}$ is obvious. Second, since $g^T x_1 + h = 0$ and $g^T x_2 + h = 0$, $g^T (x_2 - x_1) = 0$. Moreover, for all $z \in \mathbb{R}^n$, $z^T (A + \mu g g^T) z = z^T A z + (g^T z)^2 \geq 0$, so $-z^T A z \leq (g^T z)^2$. Therefore,

$$\begin{aligned} &(\lambda x_1 + (1 - \lambda)x_2)^T A(\lambda x_1 + (1 - \lambda)x_2) + b^T(\lambda x_1 + (1 - \lambda)x_2) + c \\ &= &\lambda(x_1^T A x_1 + b^T x_1 + c) + (1 - \lambda)(x_2^T A x_2 + b^T x_2 + c) \\ &- &\lambda(1 - \lambda)(x_2 - x_1)^T A(x_2 - x_1) \\ &\leq &\lambda(x_1^T A x_1 + b^T x_1 + c) + (1 - \lambda)(x_2^T A x_2 + b^T x_2 + c) \\ &- &\lambda(1 - \lambda)(g^T(x_2 - x_1))^2 \\ &= &\lambda(x_1^T A x_1 + b^T x_1 + c) + (1 - \lambda)(x_2^T A x_2 + b^T x_2 + c) \leq 0 \end{aligned}$$

Thus, K is convex.

Problem 0.5. (Text, 2.12)

(a) For
$$x, y \in C := \{x \in \mathbb{R}^n | \alpha \le a^T x \le \beta\}$$
 and $0 \le \lambda \le 1$,

$$a^{T}((1-\lambda)x + \lambda y) = (1-\lambda)a^{T}x + \lambda a^{T}y \ge (1-\lambda)\alpha + \lambda\alpha = \alpha$$

and

$$a^{T}((1-\lambda)x + \lambda y) = (1-\lambda)a^{T}x + \lambda a^{T}y \le (1-\lambda)\beta + \lambda\beta = \beta.$$

Thus, $(1 - \lambda)x + \lambda y \in C$.

- (b) $\{x \in \mathbb{R}^n | \alpha_i \le x_i \le \beta_i, i = 1, \dots, n\} = \bigcap_i \{x \in \mathbb{R}^n | \alpha_i \le e_i^T x \le \beta_i\}$. Thus, convex.
- (c) $\{x \in \mathbb{R}^n | a_1^T x \leq b_1, a_2^T x \leq b_2\} = \{x \in \mathbb{R}^n | a_1^T x \leq b_1\} \cap \{x \in \mathbb{R}^n | a_2^T x \leq b_2\}$. Thus, convex.
- (d) By definition, we have the following equivalent inequalities:

$$||x - x_0||_2 \le ||x - y||_2 \iff (x - x_0)^T (x - x_0) \le (x - y)^T (x - y)$$

$$\iff 2(y - x_0)^T x \le y^T y - x_0^T x_0$$

Therefore, $\{x | \|x - x_0\|_2 \le \|x - y\|_2, \forall y \in S\} = \bigcap_{y \in S} \{x | 2(y - x_0)^T x \le y^T y - x_0^T x_0\}.$ Thus, convex.

(e) Consider the following counter example: Let $S = \{x \in \mathbb{R} | x \ge 1\} \cup \{x \in \mathbb{R} | x \le 0\}$ and T be the complement of S. Then,

$$S = \{x | \operatorname{dist}(x, S) \le \operatorname{dist}(x, T)\}.$$

But, S is not convex.

- (f) $\{x|x+S_2 \subseteq S_1\} = \bigcap_{y \in S_2} \{x|x \in S_1 y\}$. Since translation $S_1 y$ preserves convexity, $\{x|x \in S_1 y\}$ is convex, and so is $\{x|x+S_2 \subseteq S_1\}$.
- (g) When $\theta = 0$ or $\theta = 1$, it is easy to see that $C = \{x | ||x a||_2 \le \theta ||x b||_2\}$ is convex. For $0 < \theta < 1$,

$$\begin{aligned} \|x-a\|_{2} &\leq \theta \|x-b\|_{2} &\Leftrightarrow (x-a)^{T} (x-a) \leq \theta^{2} (x-b)^{T} (x-b) \\ &\Leftrightarrow (1-\theta^{2}) x^{T} x - 2(a-\theta^{2}b)^{T} x \leq -a^{T} a + \theta^{2} b^{T} b \\ &\Leftrightarrow \|x-\frac{a-\theta^{2}b}{1-\theta^{2}}\|_{2}^{2} \leq \frac{(a-\theta^{2}b)^{T} (a-\theta^{2}b) + (1-\theta^{2})(-a^{T} a+\theta^{2}b^{T} b)}{(1-\theta^{2})^{2}} = \frac{\theta^{2} \|a-b\|_{2}^{2}}{(1-\theta^{2})^{2}}.\end{aligned}$$

Thus, C is a ball, and hence convex.

Problem 0.6. (Text, 2.19)

(a)

$$f^{-1}(C) = \{x \in \text{dom} f | f(x) \in C\} \\
= \{x | c^T x + d > 0, \frac{Ax+b}{c^T x+d} \in C\} \\
= \{x | c^T x + d > 0, g^T A x + g^T b \le h c^T x + h d\} \\
= \{x | c^T x + d > 0, (A^T g - h c)^T x \le h d - g^T b\}.$$

(b)

$$f^{-1}(C) = \{x \in \text{dom} f | f(x) \in C\} \\ = \{x | c^T x + d > 0, \frac{Ax+b}{c^T x+d} \in C\} \\ = \{x | c^T x + d > 0, GAx + Gb \le hc^T x + dh\} \\ = \{x | c^T x + d > 0, (GA - hc^T)x \le dh - Gb\}.$$

(c)

$$f^{-1}(C) = \{x \in \text{dom} f | f(x) \in C\} \\ = \{x | c^T x + d > 0, \frac{Ax+b}{c^T x+d} \in C\} \\ = \{x | c^T x + d > 0, (Ax+b)^T P^{-1} (Ax+b) \le (c^T x + d)^2\} \\ = ??$$

(d)

$$f^{-1}(C) = \{x \in \text{dom} f | f(x) \in C\} \\ = \{x | c^T x + d > 0, \frac{Ax+b}{c^T x+d} \in C\} \\ = \{x | c^T x + d > 0, (Ax+b)_1 A_1 + \dots + (Ax+b)_n A_n \preceq (c^T x + d)B\} \\ = ??$$

Problem 0.7. (Text, 2.28)

(a)
$$x_1$$
 is PDS iff $x_1 \ge 0$.
(b) $\begin{bmatrix} x_1 & x_2 \\ x_2 & x_3 \end{bmatrix} \succeq 0$ iff $x_1 \ge 0, x_3 \ge 0$, and $x_1x_3 - x_2^2 \ge 0$.
(c) $\begin{bmatrix} x_1 & x_2 & x_3 \\ x_2 & x_4 & x_5 \\ x_3 & x_5 & x_6 \end{bmatrix} \succeq 0$ iff

$$x_1 \ge 0, x_4 \ge 0, x_6 \ge 0$$

$$x_1 x_4 - x_2^2 \ge 0, x_1 x_6 - x_3^2 \ge 0, x_4 x_6 - x_5^2 \ge 0, \text{ and}$$

$$x_1 (x_4 x_6 - x_5^2) - x_2 (x_2 x_6 - x_3 x_5) + x_3 (x_2 x_5 - x_3 x_4) \ge 0.$$