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Solution of homework II

Problem 0.1. (Text, 3.1)

(a) By the assumption, b−x
b−a

≥ 0 and x−a
b−a

≥ 0. Moreover, b−x
b−a

+ x−a
b−a

= 1. Let λ = b−x
b−a

.
Then, x = b− λ(b− a) = (1− λ)b + λa. Thus,

f(x) = f((1− λ)b + λa) ≤ λf(a) + (1− λ)f(b) =
b− x

b− a
f(a) +

x− a

b− a
f(b).

(b) f(x)−f(a)
x−a

≤ f(b)−f(a)
b−a

:

f(x)−f(a)
x−a

≤ f(b)−f(a)
b−a

⇔ f(x)− f(a) ≤ x−a
b−a

f(b)− x−a
b−a

f(a)

⇔ f(x) ≤ x−a
b−a

f(b) + b−x
b−a

f(a).

Thus, the first inequality holds by (a). The second inequality can be proved in a similar
way.

(c) Since f(x)−f(a)
x−a

≤ f(b)−f(a)
b−a

for all x ∈ (a, b),

lim
x→a

f(x)− f(a)

x− a
= f ′(a) ≤ lim

x→a

f(b)− f(a)

b− a
=

f(b)− f(a)

b− a
.

Similarly, f ′(b) ≥ f(b)−f(a)
b−a

.

(d) From (c),
f(b) ≥ f(a) + f ′(a)(b− a), f(a) ≥ f(b) + f ′(b)(a− b).

By summing these two inequalities we have

(b− a)(f ′(b)− f ′(a)) ≥ 0 ⇒ f ′(b)− f ′(a)

b− a
≥ 0.

By limiting b → a, we obtain f ′′(a) ≥ 0. f ′′(b) ≥ 0 can be proved in a similar way.

Problem 0.2. (Text, 3.2)

Problem 0.3. (Text, 3.3) First, since f is increasing, f(x1) = y1, f(x2) = y2, and y1 < y2

implies x1 < x2. Thus, g is an increasing function. Moreover,

g((1− λ)y1 + λy2) = g((1− λ)f(x1) + λf(x2))
≥ g(f((1− λ)x1 + λx2))
= (1− λ)x1 + λx2

= (1− λ)g(y1) + λg(y2).

Thus, g is a concave function.
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Problem 0.4. (Text, 3.6)

(i) epif is a halfspace iff hypof is a halfspace. Thus, f is both convex and concave, and
hence affine function.

(ii) If epif is a convex cone, for α, β ≥ 0 and (x, f(x)), (y, f(y)) ∈ epif ,

f(αx + βy) ≤ αf(x) + βf(y).

It implies that f is a sublinear function.

(iii) epif is a polyhedron iff

epif = {(x, t)|〈sj, x〉+ αjt ≤ bj for j ∈ J}.

For this set to be an epigraph each αj should be nonpositive, so we can assume that
αj = −1 for all j. Furthermore, we may denote by {1, . . . ,m} ⊆ J such that αj = −1
and by {m + 1, . . . ,m + p} the rest. With these notations,

f(x) := max{〈sj, x〉 − bj : j = 1, . . . ,m}

defines a polyhedron epigraph.

Problem 0.5. (Text, 3.7) Suppose that f(x) < M for all x ∈ Rn. By the first-order
conditions for convexity,

f(y) ≥ f(x) +∇f(x)T (y − x), ∀x, y ∈ Rn.

Suppose that f is not constant, which means that there exists a x̄ ∈ Rn such that ∇f(x̄) 6= 0.
For any positive α > 0 let y := x̄ + α∇f(x̄). Then, first-order condition implies that

f(y) ≥ f(x̄) + α‖∇f(x̄)‖2
2

Let α = M−f(x̄)

‖∇f(x̄‖22
. Then,

f(
M − f(x̄)

‖∇f(x̄‖2
2

∇f(x̄)) ≥ M,

a contradiction.

Problem 0.6. (Text, 3.9)

(a) By the second order condition f̃ is convex if and only if ∇2f̃(x) � 0 for all x ∈ domf̃ .
Thus,

∇2f̃(x = Fz + x̂) = ∇2f(Fz + x̂) = F T f(Fz + x̂)F � 0.

2



(b) From (a) f̃ is convex if and only if F T∇2f̃(Fz + x̂)F � 0. This means that

yT F T∇2f̃(Fz + x̂)Fy ≥ 0,∀y.

Since the null space of A is equal to the range space of F ,

wT∇2f̃(Fz + x̂)w ≥ 0,∀w ∈ N (A).

Thus, by the hint, the proof is completed.

Problem 0.7. (Text, 3.20)

(a)
‖A((1− λ)x + λy)− b‖ = ‖(1− λ)(Ax− b) + λ(Ay − b)‖

≤ (1− λ)‖Ax− b‖+ λ‖Ay − b‖.

where the second inequality is due to the homogeneity and metric property of ‖ · ‖.

(b) Not yet...

(c) Not yet...

Problem 0.8. (Text, 3.22) In this problem we will express f(x) as h(g(x)), and then apply
the composition rules.

(a) f(x) = h(g(x)) where g(x) = − log(
∑n

i=1 eaT
i x+bi) and h(x) = − log x. Then, g(x) is

concave, and h(x) is convex and nonincreasing. Thus, f(x) is convex.

(b) f(x, u, v) = h(u, g(x, u, v)) where g(x, u, v) = v − xT x/u and h(u, y) = −√uy. Then,
g(x) is concave, and h(u, y) is convex and nonincreasing. Thus, f(x, u, v) is convex.

(c) f(x, u, v) = h(g(x, u, v)) where g(x, u, v) is a concave function defined as the negative
of (b), and h(x) = −2 log x which is a convex and nonincreasing. Thus, f(x, u, v) is
convex.

(d) f(x, t) = h(g(x, t), t) where g(x, t) = t− ‖x‖p
p

tp−1 and h(x, y) = −x1/py1−1/p. Then, g(x, t)
is concave, and h(x, y) is convex and nonincreasing. Thus, f(x, t) is convex.

(e) f(x, t) = h(g(x, t)) where g(x, t) is a concave function defined as the negative of (d),
and h(x) = −p log x which is a convex and nonincreasing. Thus, f(x, t) is convex.

Problem 0.9. (Text, 3.32)

(a) (fg)′′ = (f ′′g + 2f ′g′ + fg′′). By assumption, f, g > 0 and f ′′, g′′ ≥ 0 and hence
f ′′g, fg′′ ≥ 0. Since either f ′, g′ ≥ 0 or f ′, g′ ≤ 0, f ′g′ ≥ 0. Thus, (fg)′′ ≥ 0, and hence
fg is convex.

(b) Since f ′′, g′′ ≤ 0, and f, g > 0 and f ′g′ ≤ 0, (fg)′′ ≤ 0, and hence fg is concave.
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(c) Similar to (a) and (b).

Problem 0.10. (Text, 3.43) It suffices to prove the result for a function on R. Recall that
a function f is quasiconvex iff for all x, y ∈ domf and 0 < λ < 1,

f((1− λ)x + λy) ≤ max{f(x), f(y)}.

only if part: Suppose that f is quasiconvex and f(y) ≤ f(x). By differentiability of f at
x, we have

f((1− λ)x + λy)− f(x) = λf ′(x)(y − x) + λ|y − x|α(x; λ(y − x))

for λ ∈ (0, 1) where α(x; λ(y − x)) → 0 as λ → 0. By the quasiconvexity of f , we have
f((1 − λ)x + λy) − f(x) = λf ′(x)(y − x) + λ|x − y|α(x; λ(y − x)) ≤ 0. Dividing by λ and
letting λ → 0, we get

f ′(x)(y − x) ≤ 0.

if part: Suppose that x and y are any two points such that f(y) ≤ f(x). We assume
that y < x (A proof for y > x is similar). Suppose f is not quasiconvex, i.e., there exists
z ∈ (y, x) such that f(z) > max{f(x), f(y)}. By continuity of f , there exists z′ ∈ (z, x) such
that f ′(z′) < 0 and f(y) ≤ f(z′). Then,

f ′(z′)(y − z′) > 0,

a contradiction.

4


