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Solution of homework 11
Problem 0.1. (Text, 3.1)

(a) By the assumption, } bz > and $=2 > 0. Moreover, Z:—z +ir =1 Let A = 2:—2
Then, v =b— \(b— a) (1— ) . Thus,
b—x T —a
F() = F((1= b+ Aa) < Af(a) + (1= NS B) = 7 f(a) + T (b)
fl@) — f(b)—f(a
(b) (; a()< (l)) (@).

fermfe) ¢ JO-1@) oy p(p)
& flx) < Z0f ) + = f(a).

Thus, the first inequality holds by (a). The second inequality can be proved in a similar
way.

(¢) Since L@=10) <

i £ = @) o SO = @) F0) = fla)

T—a Tr—a r—a b—a b—a
s f(b)—f(a)
Similarly, f'(b) > =5=%.

(d) From (c),

b)—f(a
£( I))_i‘( ) for all x € (a,b),

f) = fla) + f(a)(b—a), f(a) = f(b)+ f'(b)(a—D).
By summing these two inequalities we have

"py — f
b-a)f®) -~ fa) 20 = TOZT 5,
By limiting b — a, we obtain f”(a) > 0. f”(b) > 0 can be proved in a similar way.
Problem 0.2. (Text, 3.2)

Problem 0.3. (Text, 3.3) First, since f is increasing, f(z1) = y1, f(z2) = y2, and y; < y
implies 1 < x5. Thus, ¢ is an increasing function. Moreover,

g((1 = Ny1 + Aya) g((1 = N)f(z1) + Af(22))
(g(f((l — A)z1 + AT2))
(1-

(AVA|

A1 + Azg
Ng(y1) + Ag(yz).

Thus, g is a concave function.



Problem 0.4. (Text, 3.6)

(i) epif is a halfspace iff hypof is a halfspace. Thus, f is both convex and concave, and
hence affine function.

(ii) If epif is a convex cone, for a,, 3 > 0 and (x, f(x)), (y, f(y)) € epif,

flax + By) < af (x) + B (y).
It implies that f is a sublinear function.
(iii) epif is a polyhedron iff
epif = {(z,t)|(s;,x) + ot <b; for je J}.

For this set to be an epigraph each «; should be nonpositive, so we can assume that
a; = —1 for all j. Furthermore, we may denote by {1,...,m} C J such that o; = —1
and by {m +1,...,m + p} the rest. With these notations,

f(z) =max{(s;,z) —bj:j=1,...,m}
defines a polyhedron epigraph.

Problem 0.5. (Text, 3.7) Suppose that f(z) < M for all x € R". By the first-order
conditions for convexity,

fy) > fx)+ V@) (y—x), Yo,y ecR"

Suppose that f is not constant, which means that there exists a & € R" such that V f(z) # 0.
For any positive o > 0 let y := & + oV f(Z). Then, first-order condition implies that

fy) = f(@) +allVf(2)]3

_ M—f(@
Let a = NGELE Then,

M- @)
FCfegiae V) 2 M.

a contradiction.
Problem 0.6. (Text, 3.9)

(a) By the second order condition f is convex if and only if V2f(x) >= 0 for all € domj.
Thus, 3
Vif(x =Fz+ 1) =V f(Fz+3)=F f(Fz +2)F = 0.



(b) From (a) f is convex if and only if FTV2f(Fz + Z)F > 0. This means that
yTFIN2f(Fz+2)Fy > 0,Vy.
Since the null space of A is equal to the range space of F
wIV2f(Fz + &)w > 0,Yw € N(A).
Thus, by the hint, the proof is completed.

Problem 0.7. (Text, 3.20)

(a)
AT = Az + Ay) =0l = [[(1 = A)(Az = b) + A(Ay = b
< (L=A)[[Az = b] + Al Ay — o]
where the second inequality is due to the homogeneity and metric property of || - ||.
(b) Not yet...
(c) Not yet...

Problem 0.8. (Text, 3.22) In this problem we will express f(z) as h(g(z)), and then apply
the composition rules.

(a) f(x) = h(g(z)) where g(z) = —log(327, €% ***) and h(z) = —logz. Then, g(z) is

concave, and h(z) is convex and nonincreasing. Thus, f(x) is convex.

(b) f(z,u,v) = h(u, g(x,u,v)) where g(x,u,v) = v — 2Tz /u and h(u,y) = —/uy. Then,
g(x) is concave, and h(u,y) is convex and nonincreasing. Thus, f(x,u,v) is convex.

(¢) f(z,u,v) = h(g(x,u,v)) where g(z,u,v) is a concave function defined as the negative
of (b), and h(x) = —2logx which is a convex and nonincreasing. Thus, f(z,u,v) is
convex.

(d) f(z,t) = h(g(z,t),t) where g(z,t) =t — ‘t‘f—l% and h(z,y) = —x'/Py'~Y/?. Then, g(z,1)
is concave, and h(x,y) is convex and nonincreasing. Thus, f(z,t) is convex.

(e) f(z,t) = h(g(x,t)) where g(x,t) is a concave function defined as the negative of (d),
and h(x) = —plogx which is a convex and nonincreasing. Thus, f(x,t) is convex.

Problem 0.9. (Text, 3.32)

(a) (f9)" = (f"g+2f¢ + fg"). By assumption, f,g > 0 and f” ¢" >
f"g, fg” > 0. Since either ', ¢ > 0or f',¢ <0, f'¢’ > 0. Thus, (fg)" >
fg is convex.

and hence
and hence

0
0,

(b) Since f”,¢” <0, and f,g > 0and f'¢ <0, (fg)” <0, and hence fg is concave.
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(c) Similar to (a) and (b).
Problem 0.10. (Text, 3.43) It suffices to prove the result for a function on R. Recall that

a function f is quasiconvex iff for all x,y € domf and 0 < A < 1,

ST =Xz + Ay) < max{f(z), f(y)}.

only if part: Suppose that f is quasiconvex and f(y) < f(x). By differentiability of f at
x, we have

S =Nz +Ay) = f(z) = A (2)(y — 2) + Aly — zfo(z; Ay — )

for A € (0,1) where a(z; A\(y —z)) — 0 as A — 0. By the quasiconvexity of f, we have
F((L =Nz + Ay) — f(z) = Mf'(2)(y — ) + Mz — y|la(z; My — x)) < 0. Dividing by A and
letting A\ — 0, we get

f'@)(y —x) <0.

if part: Suppose that x and y are any two points such that f(y) < f(z). We assume
that y < x (A proof for y > z is similar). Suppose f is not quasiconvex, i.e., there exists
z € (y,x) such that f(z) > max{f(z), f(y)}. By continuity of f, there exists z’ € (z,x) such
that f'(2') < 0 and f(y) < f(2'). Then,

')y —2) >0,

a contradiction.



