Seoul National University

Nonlinear programming

Optimization Lab.

2009

Yun-Hong Min

Solution of homework III

Problem 0.1. (Text, 4.1) Skip

Problem 0.2. (Text, 4.2)

(a) \Leftarrow : Suppose that there exist $v \neq 0$ with $Av \leq 0$ and \bar{x} with $A\bar{x} < b$. Let $x_{\alpha} := \bar{x} + \alpha v$ for $\alpha > 0$. Then,

$$Ax_{\alpha} = A\bar{x} + \alpha Av < b.$$

Thus, $x_{\alpha} \in \text{dom} f_0$ for all $\alpha > 0$. As $\alpha \to \infty$ we can increase or decrease x_{α} arbitrarily large. Thus, $\text{dom} f_0$ is unbounded.

 \Rightarrow : Suppose f_0 is unbounded, and for all $v \neq 0$ Av > 0. For any $v \neq 0$, consider the solution $x_v := \bar{x} + \alpha \frac{v}{\|v\|}$ where $\alpha > 0$. To ensure the feasibility of x_v , it must satisfy

$$Ax_v = A\bar{x} + \alpha Av < b.$$

Thus, we cannot increase α arbitrarily large for any direction v. This implies that dom f_0 is bounded, a contradiction.

(b)

There exists a v with $Av \leq 0$, $Av \neq 0$. \Leftrightarrow There exists no $z \succ 0$ such that $A^T z = 0$. \Leftrightarrow There exists no $z \succ 0$ such that $\sum_{i=1}^{m} z_i a_i = 0$. \Leftrightarrow There exists no $z \prec 0$ such that $\sum_{i=1}^{m} z_i a_i = 0$. \Leftrightarrow $\sum_{i=1}^{m} \frac{a_i}{b_i - a_i^T x} \neq 0$, $\forall x \in \text{dom} f_0$.

Thus, since our problem is feasible, but doesn't have any optimal solution, it is unbounded below.

- (c) From (b).
- (d) Skip.

Problem 0.3. (Text, 4.3) Note that a given problem is a convex optimization problem. Thus, we will use the optimality condition that "For convex minimization with differentiable f_0 , feasible x is optimal iff $\nabla f_0(x)^T(y-x) \ge 0$ for any feasible y". For a given point x^* , $\nabla f(x^*) = (-1, 0, 2)^T$. Thus,

$$\nabla f_0(x)^T(y-x) = -(y_1-1) + 2(y_3+1).$$

For any feasible y such that $y_i \in [-1,1], -(y_1-1) \ge 0$ and $(y_3+1) \ge 0$, and hence $\nabla f_0(x)^T(y-x) \ge 0$ for any feasible y. Thus, x^* is optimal.

Problem 0.4. (Text, 4.5) Skip

Problem 0.5. (Text, 4.8)

(a) Skip

- (b) Skip
- (c) Set $x_i = l_i$ if $c_i > 0$, and $x_i = u_i$ if $c_i \le 0$.
- (d) Choose the index *i* such that $c_i \leq c_j$ for all j = 1, ..., n. Then, set $x_i = 1$ and $x_j = 0$ for all $j \neq i$. If the equality constraint is replaced by an inequality, set $x_i = 1$ and $x_j = 0$ for all $j \neq i$, if $c_i \leq 0$, and set $x_j = 0$ for all j if $c_j \geq 0$ for all j.
- (e) We can assume that $c_1 \leq c_2 \leq \cdots \leq c_n$ without loss of generality. Now we set $x_i = 1$ from i = 1 to i = k where $\sum_{i=1}^{k} x_i = \alpha$. If α is not an integer, for the last index, say $k, x_k = \alpha (k 1)$. If the equality constraint is replaced by an inequality, it suffices to consider the x_i such that $c_i \leq 0$.

(f) Skip

Problem 0.6. (Text, 4.13) Consider the simpler robust linear constraint:

$$a_1x_1 + \dots + a_nx_n \leq b, \ \forall i, \bar{a}_i - v_i \leq a_i \leq \bar{a}_i + v_i.$$

When we can express it as linear inequalities, we can easily convert the original robust LP to an ordinary LP. Consider the following linear inequality system:

$$t_1 + \dots + t_n \le b$$

$$(\bar{a}_i - v_1)x_i \le t_i$$

$$(\bar{a}_i + v_i)x_i \le t_i$$

Thus, we have total 1 + 2n constraints with 2n variables. Suppose x is a feasible for our linear inequality system. We need to show that any a_i between $\bar{a}_i - v_i$ and $\bar{a}_i + v_i$, it satisfies $a_1x_1 + \cdots + a_nx_n \leq b$. Since $a_ix_i \leq \max\{(\bar{a}_i - v_i)x, (\bar{a}_i + v_i)x\} \leq t_i$, the claim holds.

By applying the described conversion to each constraint of robust LP, we can construct m(1+2n) constraints with 2nm variables which describes the original robust LP.

Problem 0.7. (Text, 4.20) Skip

Problem 0.8. (Text, 4.21)

(a) Consider the problem of minimizing $c^T x$ over the unit ball centered at origin. Let y^* be the optimal solution of this problem. Then, we can construct the optimal solution x^* to the problem of minimizing $c^T x$ over the ellipsoid, $x^T A x \leq 1$: $x^* = A^{-1/2} y^*$. Since $y^* = -c/||c||_2$, $x^* = -A^{-1/2}c/||c||_2$.

- (b) By the similar argument to (a), $x^* = A^{-1/2}y^* + x_c$.
- (c) For any $x \in \mathbb{R}^n$, $x^T B x \ge 0$. Thus, 0 is a lower bound of the optimal value. Let $x^* := 0$. Then, x^* is feasible, and it achieves 0 for the objective value. Thus, x^* is optimum.

Problem 0.9. (Text, 4.22) First, $(x^*)^T x^* = q^T (P + \lambda I)^{-2} q = I$, and hence x^* is feasible. To prove the optimality of x^* it suffices to show that

$$\nabla f(x^*)^T(y - x^*) \ge 0 \ \forall y, y^T y \le 1.$$

For $f(x^*) = -P(P + \lambda I)^{-1}q + q$, the minimum value of $\nabla f(x^*)^T(y - x^*)$ over $y^T y \leq 1$ is achieved at $y = -\nabla f(x^*)/\|\nabla f(x^*)\|_2$. Thus, we need to check that

$$(-P(P+\lambda I)^{-1}q+q)^T(y+(P+\lambda I)^{-1}q) \ge 0$$

at $y = -\nabla f(x^*) / \|\nabla f(x^*)\|_2$. By a simple manipulation,

$$\nabla f(x^*)^T (y - x^*) = \| P(P + \lambda I)^{-1} q + q \| + (-P(P + \lambda I)^{-1} q + q)^T (P + \lambda I)^{-1} q \\ = \| P(P + \lambda I)^{-1} q + q \| - q^T (P + \lambda I)^{-1} P(P + \lambda I)^{-1} q + q^T (P + \lambda I)^{-1} q$$

We will show the Theorem by showing that

$$-q^{T}(P+\lambda I)^{-1}P(P+\lambda I)^{-1}q + q^{T}(P+\lambda I)^{-1}q \ge 0$$

Since $q^T (P + \lambda I)^{-2} q = 1$ and $\lambda \ge 0$,

$$\begin{aligned} -q^{T}(P+\lambda I)^{-1}P(P+\lambda I)^{-1}q + q^{T}(P+\lambda I)^{-1} &= q^{T}((P+\lambda I)^{-1} - (P+\lambda I)^{-1}P(P+\lambda I)^{-1})q \\ &= (P+\lambda I)^{-1}(P+\lambda I - P)(P+\lambda I)^{-1} \\ &= \lambda q^{T}(P+\lambda I)^{-1}q = \lambda \ge 0 \end{aligned}$$