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Solution of homework III

Problem 0.1. (Text, 4.1) Skip

Problem 0.2. (Text, 4.2)

(a) ⇐: Suppose that there exist v 6= 0 with Av ≤ 0 and x̄ with Ax̄ < b. Let xα := x̄ + αv
for α > 0. Then,

Axα = Ax̄ + αAv < b.

Thus, xα ∈ domf0 for all α > 0. As α →∞ we can increase or decrease xα arbitrarily
large. Thus, domf0 is unbounded.
⇒: Suppose f0 is unbounded, and for all v 6= 0 Av > 0. For any v 6= 0, consider the
solution xv := x̄ + α v

‖v‖ where α > 0. To ensure the feasibility of xv, it must satisfy

Axv = Ax̄ + αAv < b.

Thus, we cannot increase α arbitrarily large for any direction v.This implies that domf0

is bounded, a contradiction.

(b)
There exists a v with Av ≤ 0, Av 6= 0.

⇔ There exists no z Â 0 such that AT z = 0.
⇔ There exists no z Â 0 such that

∑m
i=1 ziai = 0.

⇔ There exists no z ≺ 0 such that
∑m

i=1 ziai = 0.
⇔ ∑m

i=1
ai

bi−aT
i x
6= 0, ∀x ∈ domf0.

Thus, since our problem is feasible, but doesn’t have any optimal solution, it is un-
bounded below.

(c) From (b).

(d) Skip.

Problem 0.3. (Text, 4.3) Note that a given problem is a convex optimization problem.
Thus, we will use the optimality condition that “For convex minimization with differentiable
f0, feasible x is optimal iff ∇f0(x)T (y − x) =≥ 0 for any feasible y”. For a given point x∗,
∇f(x∗) = (−1, 0, 2)T . Thus,

∇f0(x)T (y − x) = −(y1 − 1) + 2(y3 + 1).

For any feasible y such that yi ∈ [−1, 1], −(y1 − 1) ≥ 0 and (y3 + 1) ≥ 0, and hence
∇f0(x)T (y − x) ≥ 0 for any feasible y. Thus, x∗ is optimal.
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Problem 0.4. (Text, 4.5) Skip

Problem 0.5. (Text, 4.8)

(a) Skip

(b) Skip

(c) Set xi = li if ci > 0, and xi = ui if ci ≤ 0.

(d) Choose the index i such that ci ≤ cj for all j = 1, . . . , n. Then, set xi = 1 and xj = 0
for all j 6= i. If the equality constraint is replaced by an inequality, set xi = 1 and
xj = 0 for all j 6= i, if ci ≤ 0, and set xj = 0 for all j if cj ≥ 0 for all j.

(e) We can assume that c1 ≤ c2 ≤ · · · ≤ cn without loss of generality. Now we set xi = 1
from i = 1 to i = k where

∑k
i=1 xi = α. If α is not an integer, for the last index, say

k, xk = α − (k − 1). If the equality constraint is replaced by an inequality, it suffices
to consider the xi such that ci ≤ 0.

(f) Skip

Problem 0.6. (Text, 4.13) Consider the simpler robust linear constraint:

a1x1 + · · ·+ anxn ≤ b, ∀i, āi − vi ≤ ai ≤ āi + vi.

When we can express it as linear inequalities, we can easily convert the original robust LP
to an ordinary LP. Consider the following linear inequality system:

t1 + · · ·+ tn ≤ b
(āi − v1)xi ≤ ti
(āi + vi)xi ≤ ti

Thus, we have total 1 + 2n constraints with 2n variables. Suppose x is a feasible for our
linear inequality system. We need to show that any ai between āi− vi and āi + vi, it satisfies
a1x1 + · · ·+ anxn ≤ b. Since aixi ≤ max{(āi − vi)x, (āi + vi)x} ≤ ti, the claim holds.

By applying the described conversion to each constraint of robust LP, we can construct
m(1 + 2n) constraints with 2nm variables which describes the original robust LP.

Problem 0.7. (Text, 4.20) Skip

Problem 0.8. (Text, 4.21)

(a) Consider the problem of minimizing cT x over the unit ball centered at origin. Let y∗

be the optimal solution of this problem. Then, we can construct the optimal solution
x∗to the problem of minimizing cT x over the ellipsoid, xT Ax ≤ 1: x∗ = A−1/2y∗. Since
y∗ = −c/‖c‖2, x∗ = −A−1/2c/‖c‖2.
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(b) By the similar argument to (a), x∗ = A−1/2y∗ + xc.

(c) For any x ∈ Rn, xT Bx ≥ 0. Thus, 0 is a lower bound of the optimal value. Let x∗ := 0.
Then, x∗ is feasible, and it achieves 0 for the objective value. Thus, x∗ is optimum.

Problem 0.9. (Text, 4.22) First, (x∗)T x∗ = qT (P + λI)−2q = I, and hence x∗ is feasible.
To prove the optimality of x∗ it suffices to show that

∇f(x∗)T (y − x∗) ≥ 0 ∀y, yT y ≤ 1.

For f(x∗) = −P (P + λI)−1q + q, the minimum value of ∇f(x∗)T (y − x∗) over yT y ≤ 1 is
achieved at y = −∇f(x∗)/‖∇f(x∗)‖2. Thus, we need to check that

(−P (P + λI)−1q + q)T (y + (P + λI)−1q) ≥ 0

at y = −∇f(x∗)/‖∇f(x∗)‖2. By a simple manipulation,

∇f(x∗)T (y − x∗) = ‖P (P + λI)−1q + q‖+ (−P (P + λI)−1q + q)T (P + λI)−1q
= ‖P (P + λI)−1q + q‖ − qT (P + λI)−1P (P + λI)−1q + qT (P + λI)−1q

We will show the Theorem by showing that

−qT (P + λI)−1P (P + λI)−1q + qT (P + λI)−1q ≥ 0.

Since qT (P + λI)−2q = 1 and λ ≥ 0,

−qT (P + λI)−1P (P + λI)−1q + qT (P + λI)−1 = qT ((P + λI)−1 − (P + λI)−1P (P + λI)−1)q
= (P + λI)−1(P + λI − P )(P + λI)−1

= λqT (P + λI)−1q = λ ≥ 0
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