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Solution of homework V

Problem 0.1. Use Lagrangian to solve the followings:

(a) min{‖x‖2|
∑n

i=1 x1 = 1}: Solution. We want to find x∗ satisfying sufficient condition
for optimality. Since L(x, λ) = ‖x‖2 + λ(

∑n
i=1 xi − 1), x∗ and λ∗ should satisfy

∇xL = 2x + λ1 = 0 and
n∑

i=1

xi = 1.

Thus, x∗ = (−λ∗/2)1 and by
∑n

i=1 x∗i = 1, λ∗ = −2/n. Thus, x∗i = 1/n for all
i = 1, . . . , n. Moreover, ∇2L(x∗, λ∗) = 2 > 0. Thus, x∗ = (1/n)1 is optimal.

(b) min{
∑n

i=1 xi|‖x‖2 = 1}: Solution. Since L(x, λ) =
∑n

i=1 xi + λ(‖x‖2 − 1), x∗ and λ∗

should satisfy
∇xL = 1 + 2λ∗x∗ = 0, ‖x∗‖ = 1, and

∇2L(x∗, λ∗) = 2λ∗I � 0.

Thus, x∗i = −1/(2λ∗) for all i = 1, . . . , n, and ‖x∗‖2 =
∑n

i=1(x
∗
i )

2 = n/(4(λ∗)2) = 1
implies λ∗ = ±

√
n/2. Since λ∗ > 0, x∗i = −1/

√
n for all i = 1, . . . , n.

(c) min{‖x‖2|xT Qx = 1}, where Q is PD :Solution. Skip.

Problem 0.2. Let x∗ be an unconstrained local minimum of f : Rn → R. Also assume f is
twice differentiable in an open set S. Then, ∇2f(x∗) is positive semidefinite.

Solution. Suppose ∇2f(x∗) is not positive semi-definite. Then there exists d such that
dT∇2f(x∗)d < 0. Then, since f is twice differentiable we have

f(x∗ + λd) = f(x∗) + λ∇f(x∗)T d +
1

2
dT∇2f(x∗)d + λ2‖d‖2α(x∗, λd)

where α(x∗, λd) → 0 as λ → 0. By rearranging

f(x∗ + λd)− f(x∗)

λ2
=

1

2
dT∇2f(x∗)d + ‖d‖2α(· · · ).

Since dT∇2f(x∗)d < 0 and α(· · · ) → 0 as λ → 0, f(x∗ + λd) − f(x∗) < 0 for all λ > 0
sufficiently small, a contradiction.

Problem 0.3. Solve the following problem

min (x− a)2 + (y − b)2 + xy
sub.to. 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

for all possible values of a and b.
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Solution.

Problem 0.4. Consider

min −(x1x2 + x2x3 + x3x1)
sub. to. x1 + x2 + x3 = 3.

Show that x∗ = (1, 1, 1)T is a strict local minimum.

Solution. It suffices to show that x∗ satisfies second order sufficient conditions for equal-
ity constrained case. Consider L(x, λ) = −(x1x2 + x2x3 + x3x1) + λ(x1 + x2 + x3 − 3).
First, ∇xL(x∗, λ∗) = 0 holds when λ∗ = 2 and x∗ = [1, 1, 1]T . Second, it is easy to check
∇λL(x∗, λ∗) = 0. Finally,

∇2L =

 0 −1 −1
−1 0 −1
−1 −1 0


and zT∇2Lz = −2(z1x2 + z2z3 + z3z1) = z2

2 + z2
3 +(z2 + z3)

2 > 0 for all z, z1 + z2 + z3 = 0.

Problem 0.5. Verify the Schwartz inequality, xT y ≤ ‖x‖‖y‖ by solving the problem max{xT y|‖x‖2 =
1, ‖y‖2 = 1}. Similarly, for any PD matrix Q, prove

(xT y)2 ≤ (xT Qx)(yT Q−1y)

by solving min{yT x|xT Qx ≤ 1}.

Solution.

(i) By the second-order sufficient condition for the equality constrained problem, the op-
timum solution of a given optimization problem is x∗ = y∗(λ∗ = 1/2). Thus, for any x
and y satisfying ‖x‖2 = ‖y‖2 = 1, xT y ≤ 1. Now, for any u, v

uT v = (‖u‖2
u

‖u‖2

)T (‖v‖2
v

‖v‖2

) = ‖u‖2‖v‖2(
u

‖u‖2

)T (
v

‖v‖2

) ≤ ‖u‖2‖v‖2.

(ii) skip.

Problem 0.6. Show if the constraints are linear, the regularity assumption is not needed for
the second order necessary conditions except that the multipliers are not necessarily unique.

Solution. When the constraints are linear, Ax = 0, the gradient of the constraints is just
coefficient vector of the constraints, i.e., A, which is the same for all feasible x. Thus if the
row rank of A is not full, by the Gaussian elimination we can choose linearly independent
rows B of A. Then, use Bx = 0 instead of A which is equivalent to the original problem. But,
by choice of linearly independent rows of A, the corresponding multipliers can be changed.
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Problem 0.7. Consider convex optimization min{f0(x)|fi(x) ≤ 0, i = 1, . . . ,m}. Assume
x∗ satisfies KKT conditions. Show that ∇f0(x

∗)T (x− x∗) ≥ 0 for all feasible solution x.

Solution. By the assumption, x∗ and corresponding Lagrangian multiplier λ∗ satisfy

fi(x
∗) ≤ 0, i = 1, . . . ,m (1)

λ∗ ≥ 0, (2)

λ∗i fi(x
∗) = 0, i = 1, . . . ,m (3)

∇f0(x
∗) +

m∑
i=1

λ∗i∇fi(x
∗) = 0. (4)

Let Ix∗ = {i|fi(x
∗) = 0, i = 1, . . . ,m}. Then, for any feasible x, fi(x) ≤ fi(x

∗) = 0 for
i ∈ Ix∗ . Thus, for i ∈ Ix∗

fi(x
∗ + λ(x− x∗)) = fi((1− λ)x∗ + λx) ≤ (1− λ)fi(x

∗) + λfi(x),

and
fi(x

∗ + λ(x− x∗))− fi(x
∗) ≤ λ(fi(x)− fi(x

∗))
fi(x

∗+λ(x−x∗))−fi(x
∗)

λ
≤ fi(x)− fi(x

∗) ≤ 0.

Thus,

∇fi(x
∗)T (x− x∗) = lim

λ→0

fi(x
∗ + λ(x− x∗))− fi(x

∗)

λ
≤ 0

for all feasible x and i ∈ Ix∗ . Since for i /∈ Ix∗ λ∗i = 0,

m∑
i=1

λ∗i∇f(x∗)T (x− x∗) ≤ 0.

From (4),

∇f0(x
∗)T (x− x∗) +

m∑
i=1

λ∗i∇f(x∗)T (x− x∗) = 0.

Therefore, ∇f0(x
∗)T (x− x∗) ≥ 0.
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