Nonlinear programming

2009

Yun-Hong Min

Solution of homework VI

Problem 0.1. (a) **Solution.** Since P is not PSD, there exists \bar{x} such that $\bar{x}^T P \bar{x} < 0$. For any t > 0,

$$f(tx) = (1/2)t^2\bar{x}^T P\bar{x} + tq^T x + r$$

Thus, as $t \to \infty$, $f(tx) \to -\infty$. \square

(b) **Solution.** Since Px = -q does not have a solution, there exists v such that $v^T P = 0$ and $-q^T v > 0$. Then, for any \bar{x} ,

$$f(\hat{x} + tv) = f(\hat{x}) + t(v^T P \hat{x} + (1/2)q^T v) + tv^T q$$

= $f(\hat{x}) + tv^T q$

Since $v^T q < 0$, as $t \to \infty$, $f(\hat{x} + tv) \to -\infty$.

Problem 0.2. (a) Solution. $p^* = 1$.

(b) Solution. $S = \{x | x_1^2 + x_2^2 \le 8, x_1 > 1\}.$

$$\nabla^2 f(x) = \left[\begin{array}{cc} 2 & 0 \\ 0 & 2 \end{array} \right] \succ 0.$$

for all $x \in S$. Thus, f is strongly convex on S. \square

(c) skip.

Problem 0.3. ...

Problem 0.4. (a)

$$\nabla f(x)^{T} \Delta x_{nsd} = \min \{ \nabla f(x)^{T} v | ||v|| = 1 \}$$

= $-\max \{ -\nabla f(x)^{T} v | ||v|| = 1 \}$
= $-||\nabla f(x)||_{*}.$

(b)
$$\nabla f(x)^T \Delta x_{sd} = \|\nabla f(x)\|_* \nabla f(x)^T \Delta x_{nsd}$$
$$= -\|\nabla f(x)\|_*^2.$$

(c)

Problem 0.5. Skip.

1 Additional problems

Problem 1.1. Skip.

Problem 1.2. (i)
$$||z||_{2*} = \sup\{z^T x | ||x||_2 \le 1\} = ||z||_2$$
.

(ii)
$$||z||_{P^*} = \sup\{z^T x | x^T P x \le 1\}$$

$$= \sup\{z^T P^{-1/2} y | ||y||_2 \le 1\}$$

$$= ||z^T P^{-1/2}||_2$$

$$= z^T P^{-1} z = ||z||_{P^{-1}}.$$

(iii)
$$||z||_{\infty *} = \sup\{z^T x | ||x||_{\infty} \le 1\} = \sum_{i=1}^n |z_i| = ||z||_1$$

Problem 1.3. Solution. By (9), $\Delta x_{nsd} = -(\nabla f(x)^T (\nabla^2 f(x)^{-1}) \nabla f(x))^{-1/2} (\nabla^2 f(x)^{-1}) \nabla f(x)$ when we use the quadratic norm defined by $\nabla^2 f(x)$. Then, by $\Delta x_{sd} = \|\nabla f(x)\|_* \Delta x_{nsd} = -\nabla^2 f(x)^{-1} \nabla f(x) = \Delta x_{nt}$.