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Solution of homework VI

1 Equality-constrained minimization

Problem 1.1. Consider the KKT matrix

[
P AT

A 0

]
where P ∈ Sn

+, A ∈ Rp×n, and rankA =

p < n.

(a) Show that each of the following statements is equivalent to nonsingularity of the KKT
matrix.

– N (P ) ∩N (A) = {0}.
– Ax = 0, x 6= 0 ⇒ xT Px > 0.

– F T PF Â 0, where F ∈ Rn×(n−p) is a matrix for which R(F ) = N (A).

– P + AT QA Â 0 for some Q º 0.

(b) Show that if the KKT matrix is nonsingular, then it has exactly n positive and p
negative eigenvalues.

Solution of (a)

(i) Nonsingularity of KKT matrix ⇒ N (P ) ∩ N (A) = {0}: Assume that KKT matrix is
nonsingular and there exists nonzero x such that Ax = 0 and Px = 0. Then,

[
P AT

A 0

] [
x
x

]
= 0

which implies KKT matrix is singular, a contradiction.

(ii) N (P ) ∩ N (A) = {0} ⇔ Ax = 0, x 6= 0 ⇒ xT Px > 0: Since N (P ) ∩ N (A) = {0},
x /∈ N (P ), and hence xT Px 6= 0. Thus, xT Px > 0 as P ∈ Sn

+. Conversely, if x 6= 0
satisfies Ax = 0, then Px 6= 0 and Ax = 0. Thus, N (A) ∩N (P ) = {0}.

(iii) Ax = 0, x 6= 0 ⇒ xT Px > 0 ⇔ F T PF Â 0, where F ∈ Rn×(n−p) is a matrix for
which R(F ) = N (A): If Ax = 0, x 6= 0, then x must have the form x = Fz, where
z 6= 0 because rank(F ) = n − p. Then we have xT Px = zT F T PFz > 0. Conversely,
Ax = 0, x 6= 0 implies there exists z 6= 0 such that AFz = 0, Fz 6= 0. Since F T PF Â 0
and z 6= 0., xT Px = zT F T PFz > 0.
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(iv) Ax = 0, x 6= 0 ⇒ xT Px > 0⇔ P +AT QA Â 0 for some Q º 0: Suppose Ax = 0, x 6= 0
implies xT Px > 0. Then,

xT (P + AT A)x = xT Px + ‖Ax‖2
2 > 0

for all nonzero x. Thus, P + AT QA Â 0 for Q = I. Conversely, P + (AT QA) Â 0 for
some Q º 0. Then,

xT (P + AT QA)x = xT Px + xT AT QAx > 0

This implies that xT Px > 0 whenever Ax = 0.

(v) N (P ) ∩N (A) = {0} ⇒ Nonsingularity of KKT matrix: Suppose that KKT matrix is
singular, i.e., there are x, y, not both zero, such that

[
P AT

A 0

] [
x
y

]
= 0

This means that Px + AT z = 0 and Ax = 0, and hence xT Px + xT AT z = 0. Since
Ax = 0, this is equivalent to xT Px = 0, so we have Px = 0. Thus, by the assumption,
x = 0 and z 6= 0. But, AT z = 0 for nonzero z contradicts that A is a full-row rank.

Problem 1.2. The Euclidean projection of the negative gradient −∇f(x) on N (A) is given
by

∆xpg = argminAu=0‖ − ∇f(x)− u‖2.

(a) Let (v, w) be the unique solution of
[

I AT

A 0

] [
v
w

]
=

[ −∇f(x)
0

]
.

Show that v = ∆xpg.

(b) What is the relation between the projected negative gradient ∆xpg and the negative
gradient of the reduced problem (10.5), assuming F T F = I?

(c) The projected gradient method for solving an equality constrained minimization prob-
lem uses the step ∆xpg, and a backtracking line search on f . Use the results of part
(b) to give some conditions under which the projected gradient method converges to
the optimal solution, when started from a point x(0) ∈ domf with Ax(0) = b.

Solution.

(a) ∆xpg is a minimizer of equality-constrained minimization problem min{‖ − ∇f(x) −
u‖2

2|Au = 0}. Thus, by KKT condition, there exists w such that

I∆xpg + AT w = −∇f(x).

Moreover, since ∆xpg is feasible for equality-constrained minimization problem, A∆xpg =
0.
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(b)

(c)

Problem 1.3. Show that the reduced objective function f̃(z) = f(Fz + x̂) is strongly
convex, and that its Hessian is Lipschitz continuous. Express the strong convexity and
Lipschitz constants of f̃ in terms of K, M , L, and the maximum and minimum singular
values of F .

Solution. We make the following assumptions:

(i) S = {x|x ∈ domf, f(x) ≤ f(x(0)), Ax = b} is closed.

(ii) ∇2f(x) ¹ MI, and ∥∥∥∥∥
[ ∇2f(x) AT

A 0

]−1
∥∥∥∥∥

2

≤ K.

(iii) For x, x̃ ∈ S, ‖∇2f(x)−∇2f(x̃)‖2 ≤ L‖x− x̃‖2.

First, we will identify strong convexity of f̃ . Suppose F = UΣV T is SVD of F . Then,
F T F = V (ΣT Σ)V T . Thus,

∇2f̃(z) = F T∇2f(Fz + x̂)F ¹ MF T F ¹ M(σ∗)2I

where σ∗ = max{|σmax|, |σmin|} is the largest absolute value of singular values of F . Secondly,
we will identify Lipschitz constants of f̃ .

‖∇2f̃(z1)−∇2f̃(z2)‖2 = ‖F T (∇2f(Fz1 + x̂)−∇2f(Fz2 + x̂))F‖2

≤ L‖F T‖2‖F‖2‖F (z1 − z2)‖2

≤ L‖F‖5/2
2 ‖z1 − z2‖2

= L(σ∗)5/2‖z1 − z2‖2.

Problem 1.4. Show that (10.13) holds, i.e.,

f(x)− inf{f̂(x + v)|A(x + v) = b} = λ(x)2/2.

Solution Suppose v∗ is a minimizer of inf{f̂(x + v)|A(x + v) = b}. Then, by the KKT
conditions,

∇2f(x)v∗ + AT w = −∇f(x), Av∗ = 0.

Thus,
f(x)− f̂(x + v∗) = −∇f(x)T v∗ − (1/2)(v∗)T∇2f(x)v∗

= (v∗)T∇2f(x)v∗ + v∗AT w − (1/2)(v∗)T∇2f(x)v∗

= (1/2)(v∗)T∇2f(x)v∗ = (1/2)λ(x)2.
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