Nonlinear programming

Optimization Lab.

2009

Yun-Hong Min

Solution of homework VI

1 Equality-constrained minimization

Problem 1.1. Consider the KKT matrix $\begin{bmatrix} P & A^T \\ A & 0 \end{bmatrix}$ where $P \in \mathbb{S}^n_+$, $A \in \mathbb{R}^{p \times n}$, and rankA = p < n.

(a) Show that each of the following statements is equivalent to nonsingularity of the KKT matrix.

$$- \mathcal{N}(P) \cap \mathcal{N}(A) = \{0\}.$$

$$-Ax = 0, x \neq 0 \implies x^T P x > 0.$$

- $-F^T PF \succ 0$, where $F \in \mathbb{R}^{n \times (n-p)}$ is a matrix for which $\mathcal{R}(F) = \mathcal{N}(A)$.
- $-P + A^T Q A \succ 0$ for some $Q \succeq 0$.
- (b) Show that if the KKT matrix is nonsingular, then it has exactly n positive and p negative eigenvalues.

Solution of (a)

(i) Nonsingularity of KKT matrix $\Rightarrow \mathcal{N}(P) \cap \mathcal{N}(A) = \{0\}$: Assume that KKT matrix is nonsingular and there exists nonzero x such that Ax = 0 and Px = 0. Then,

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x \\ x \end{array}\right] = 0$$

which implies KKT matrix is singular, a contradiction.

- (ii) $\mathcal{N}(P) \cap \mathcal{N}(A) = \{0\} \iff Ax = 0, x \neq 0 \implies x^T P x > 0$: Since $\mathcal{N}(P) \cap \mathcal{N}(A) = \{0\}, x \notin \mathcal{N}(P)$, and hence $x^T P x \neq 0$. Thus, $x^T P x > 0$ as $P \in \mathbb{S}^n_+$. Conversely, if $x \neq 0$ satisfies Ax = 0, then $Px \neq 0$ and Ax = 0. Thus, $\mathcal{N}(A) \cap \mathcal{N}(P) = \{0\}$.
- (iii) $Ax = 0, x \neq 0 \Rightarrow x^T P x > 0 \Leftrightarrow F^T P F \succ 0$, where $F \in \mathbb{R}^{n \times (n-p)}$ is a matrix for which $\mathcal{R}(F) = \mathcal{N}(A)$: If $Ax = 0, x \neq 0$, then x must have the form x = Fz, where $z \neq 0$ because rank(F) = n - p. Then we have $x^T P x = z^T F^T P F z > 0$. Conversely, $Ax = 0, x \neq 0$ implies there exists $z \neq 0$ such that $AFz = 0, Fz \neq 0$. Since $F^T P F \succ 0$ and $z \neq 0$, $x^T P x = z^T F^T P F z > 0$.

(iv) $Ax = 0, x \neq 0 \Rightarrow x^T P x > 0 \Leftrightarrow P + A^T Q A \succ 0$ for some $Q \succeq 0$: Suppose $Ax = 0, x \neq 0$ implies $x^T P x > 0$. Then,

$$x^{T}(P + A^{T}A)x = x^{T}Px + ||Ax||_{2}^{2} > 0$$

for all nonzero x. Thus, $P + A^T Q A \succ 0$ for Q = I. Conversely, $P + (A^T Q A) \succ 0$ for some $Q \succeq 0$. Then,

$$x^T (P + A^T Q A) x = x^T P x + x^T A^T Q A x > 0$$

This implies that $x^T P x > 0$ whenever A x = 0.

(v) $\mathcal{N}(P) \cap \mathcal{N}(A) = \{0\} \Rightarrow$ Nonsingularity of KKT matrix: Suppose that KKT matrix is singular, i.e., there are x, y, not both zero, such that

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right] = 0$$

This means that $Px + A^T z = 0$ and Ax = 0, and hence $x^T P x + x^T A^T z = 0$. Since Ax = 0, this is equivalent to $x^T P x = 0$, so we have Px = 0. Thus, by the assumption, x = 0 and $z \neq 0$. But, $A^T z = 0$ for nonzero z contradicts that A is a full-row rank.

Problem 1.2. The Euclidean projection of the negative gradient $-\nabla f(x)$ on $\mathcal{N}(A)$ is given by

$$\Delta x_{pg} = \operatorname{argmin}_{Au=0} \| - \nabla f(x) - u \|_2$$

(a) Let (v, w) be the unique solution of

$$\begin{bmatrix} I & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}.$$

Show that $v = \Delta x_{pg}$.

- (b) What is the relation between the projected negative gradient Δx_{pg} and the negative gradient of the reduced problem (10.5), assuming $F^T F = I$?
- (c) The projected gradient method for solving an equality constrained minimization problem uses the step Δx_{pg} , and a backtracking line search on f. Use the results of part (b) to give some conditions under which the projected gradient method converges to the optimal solution, when started from a point $x^{(0)} \in \text{dom} f$ with $Ax^{(0)} = b$.

Solution.

(a) Δx_{pg} is a minimizer of equality-constrained minimization problem $\min\{\| -\nabla f(x) - u\|_2^2 | Au = 0\}$. Thus, by KKT condition, there exists w such that

$$I\Delta x_{pg} + A^T w = -\nabla f(x)$$

Moreover, since Δx_{pg} is feasible for equality-constrained minimization problem, $A\Delta x_{pg} = 0$.

(b)

(c)

Problem 1.3. Show that the reduced objective function $\tilde{f}(z) = f(Fz + \hat{x})$ is strongly convex, and that its Hessian is Lipschitz continuous. Express the strong convexity and Lipschitz constants of \tilde{f} in terms of K, M, L, and the maximum and minimum singular values of F.

Solution. We make the following assumptions:

(i) $S = \{x | x \in \text{dom} f, f(x) \le f(x^{(0)}), Ax = b\}$ is closed. (ii) $\nabla^2 f(x) \preceq MI$, and $\left\| \begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix}^{-1} \right\|_2 \le K.$

(iii) For $x, \tilde{x} \in S$, $\|\nabla^2 f(x) - \nabla^2 f(\tilde{x})\|_2 \le L \|x - \tilde{x}\|_2$.

First, we will identify strong convexity of \tilde{f} . Suppose $F = U\Sigma V^T$ is SVD of F. Then, $F^T F = V(\Sigma^T \Sigma) V^T$. Thus,

$$\nabla^2 \tilde{f}(z) = F^T \nabla^2 f(Fz + \hat{x}) F \preceq M F^T F \preceq M(\sigma^*)^2 I$$

where $\sigma^* = \max\{|\sigma_{\max}|, |\sigma_{\min}|\}$ is the largest absolute value of singular values of F. Secondly, we will identify Lipschitz constants of \tilde{f} .

$$\begin{aligned} \|\nabla^2 \tilde{f}(z_1) - \nabla^2 \tilde{f}(z_2)\|_2 &= \|F^T (\nabla^2 f(Fz_1 + \hat{x}) - \nabla^2 f(Fz_2 + \hat{x}))F\|_2 \\ &\leq L \|F^T\|_2 \|F\|_2 \|F(z_1 - z_2)\|_2 \\ &\leq L \|F\|_2^{5/2} \|z_1 - z_2\|_2 \\ &= L(\sigma^*)^{5/2} \|z_1 - z_2\|_2. \end{aligned}$$

Problem 1.4. Show that (10.13) holds, i.e.,

$$f(x) - \inf\{\hat{f}(x+v) | A(x+v) = b\} = \lambda(x)^2/2.$$

Solution Suppose v^* is a minimizer of $\inf\{\hat{f}(x+v)|A(x+v) = b\}$. Then, by the KKT conditions,

$$\nabla^2 f(x)v^* + A^T w = -\nabla f(x), \ Av^* = 0.$$

Thus,

$$\begin{aligned} f(x) - \hat{f}(x+v^*) &= -\nabla f(x)^T v^* - (1/2)(v^*)^T \nabla^2 f(x) v^* \\ &= (v^*)^T \nabla^2 f(x) v^* + v^* A^T w - (1/2)(v^*)^T \nabla^2 f(x) v^* \\ &= (1/2)(v^*)^T \nabla^2 f(x) v^* = (1/2)\lambda(x)^2. \end{aligned}$$