HW\#7

9-17. A air-filled rectangular cavity with brass walls- $\epsilon_{0}, \mu_{0}, \sigma=1.57 \times 10^{7}(\mathrm{~S} / \mathrm{m})$ - has the following dimensions: $a=4(\mathrm{~cm}), b=3(\mathrm{~cm})$, and $d=5(\mathrm{~cm})$.
a) Determine the dominant mode and its resonant frequency for this cavity.
b) Find the Q and the time-average stored electric and magnetic energies at the resonant frequency, assuming H_{0} to be $0.1(\mathrm{~A} / \mathrm{m})$.

9-20. For an air-filled rectangular copper cavity resonator,
a) Calculate its Q for the TE_{101} mode if its dimensions $a=d=1.8 \mathrm{~b}=3.6$ (cm) and
b) Determine how much b should be increased in order to make $Q 20 \%$ higher.

