459.731 Theory of Poroelasticity

Spring, 2010

Ki-Bok Min

Assistant Professor, Energy Resources Engineering, Seoul National University

Assignment \#1 (8 March)

due by 15 March 2010

1. Calculate the transformed stress components in 2 D from $\boldsymbol{\tau}^{\prime}=\mathbf{R} \boldsymbol{\tau} \mathbf{R}^{T}$
2. Prove that determinant of stress is invariant
3. Using both transformation equations and eigenvalue method, find principal stresses and their orientation with a given stress $\left(\begin{array}{ll}4 & 1 \\ 1 & 4\end{array}\right)$
4. The stress tensor values at a point P are given by the matrix
$\boldsymbol{\tau}=\left(\begin{array}{ccc}7 & 0 & -2 \\ 0 & 5 & 0 \\ -2 & 0 & 4\end{array}\right)$
Determine the traction (stress) vector on the plane at P whose unit normal is $\mathbf{n}=(2 / 3,-2 / 3,1 / 3)$
5. Make an excel file which allows us to calculate the principal stresses and their orientations with a given stress matrix in 3D. In submitting this file, you must include a verification case that shows that the your excel file is reliable.
