459.731 Theory of Poroelasticity

Spring, 2010, Ki-Bok Min

Assistant Professor, Energy Resources Engineering, Seoul National University

Assignment #3 (22 March)

due by 29 March 2010

1 Evaluate the following expressions involving the Kronecker delta δ_{ij} for a range of three on the indices
(a) δ_{ii}

(b)
$$\delta_{ij} \, \delta_{ij}$$

(c)
$$\delta_{ij} \, \delta_{ik} \, \delta_{jk}$$

2. For the permutation symbol $arepsilon_{ijk}$ show by direct expansion that

(a)
$$\varepsilon_{ijk} \, \varepsilon_{kij} = 6$$

(b)
$$\varepsilon_{ijk} a_i a_k = 0$$

(c)
$$det(a_{ij}) = det(\mathbf{A}) = \varepsilon_{rst}a_{r1}a_{s2}a_{t3}$$

3. \mathbf{z} is the vector product of two vectors, $\mathbf{x} = (x_1, x_2, x_3)$ and $\mathbf{y} = (y_1, y_2, y_3)$. Show that $\mathbf{z} = \mathbf{x} \times \mathbf{y}$ can be expressed as;

$$z_i = \varepsilon_{ijk} \, x_j y_k$$