459.731 Theory of Poroelasticity

Spring, 2010, Ki-Bok Min

Assistant Professor, Energy Resources Engineering, Seoul National University

Assignment #7 (19 April)

due by 3 May 2010

1.

We have shales and Gneiss which are characterized to behave as transversely isotropic material. The elastic constants for this rock is as follows.

Shale

$$E_x = E_y = E_1 = 20GPa$$

 $E_z = E_3 = 10GPa$
 $v_{xy} = v_{yx} = v_1 = 0.25$
 $v_{zy} = v_{zx} = v_2 = 0.15$
 $G_{xy} = G_{yx} = 8GPa$
 $G_2 = 4GPa$

Gneiss

$$E_x = E_y = E_1 = 50GPa$$

 $E_z = E_3 = 40GPa$
 $v_{xy} = v_{yx} = v_1 = 0.20$
 $v_{zy} = v_{zx} = v_2 = 0.18$
 $G_{xy} = G_{yx} = 20.83GPa$
 $G_2 = 20GPa$

Calculate the apparent vertical and horizontal Elastic modulus and Poisson's ratios with the rotation about y-axis.

2.

Calculate the bounds of elastic constants for the transversely isotropic rock.