SEOUL NATIONAL UNIVERSITY DEPARTMENT OF MECHANICAL AND AEROSPACE ENGINEERING

CONTROL SYSTEM THEORY	Fall 2010
HW#1	Assigned: March 10 (We)
	Due: March 17 (We)

Consider 2 DOF bicycle Model as follows:

Fig.1 2-DOF Bicycle Model

- 1. Vehicle parameters of 2 DOF bicycle model are listed in Table.1. Simulate the vehicle behaviors using the steering wheel angle maneuver (δ_{sw} = Steering Ratio $\cdot \delta_{f}$) as shown in Fig.2.
 - (1) Plot body slip angle and yaw rate. (Vx = 30, 50 and 70 kph)
 - (2) Plot vehicle trajectory. (Vx = 30, 50 and 70 kph)
 - (3) Discussion Why the Vehicle Behavior (body slip and yaw rate) is different in the situation

of same steering wheel angle with different vehicle velocity?

Symbol	Value	Symbol	Value	Symbol	Value
m	1723.8 kg	L	2.7 m	C_{f}	67248 N/rad
Iz	4175 kgm ²	l_{f}	1.24 m	C_r	53248 N/rad
Steering Ratio	15	l_r	$L - l_f$		

Table.1 Vehicle Parameters

Fig.2 Steering Wheel Angle Maneuver (δ_{sw})

- 2. Consider the 2-DOF Bicycle Model in Preblem.1. Vehicle parameters of 2 DOF bicycle model are listed in Table.2. Simulate the vehicle behaviors using the steering wheel angle maneuver as shown in Fig.3.
 - (1) Determine l_f and l_r for Neutral Steer Vehicle at Vx = 50 kph.
 - (2) Determine l_f and l_r for $K_{us} = 2 \deg$ at Vx = 50 kph
 - (3) Determine l_f and l_r for $K_{us} = -1 \deg$ at Vx = 50 kph
 - (4) Plot vehicle behaviors and vehicle trajectory of the above simulations using the below steering Behaviors

Table.2 Vehicle Parameters

Symbol	Value	Symbol	Value
m	1723.8 kg	C_{f}	67248 N/rad
Iz	4175 kgm ²	C_r	53248 N/rad
Steering Ratio	15	$L = l_f + l_r$	2.7 m

Fig.3 Steering Wheel Angle Maneuver (δ_{sw})