헬리콥터 고급이론 과제물 1번

제출기한: 4월 6일 (금)

1.

Suppose a hypothetical helicopter, somewhat similar to the Bell Jet Ranger, with the following data:

weight	W	=	3000 lb	$(1.333x10^4 \text{ N})$
rotor radius	R	=	16 ft	(4.88 m)
rotor disk area	Α	=	$\pi R^2 = 804 ft^2$	(74.7 m^2)
rotor tip speed	$\boldsymbol{V_{t}}$	=	700 ft/sec	(213 m/sec)
rotor blade chord	c	=	1 ft (=constant)	(0.3048 m)
number of blades	N	=	2	
blade profile drag coefficient	C_{d_0}	=	0.01	
lift-curve slope	a	=	6	

Take atmospheric density and pressure at sea level, respectively, as

$$\rho = 0.00238 \; slug/ft^3 \quad (1.226 \; kg/m^3), \quad p_\infty = 2116 \; lb/ft^2 \; (1.013 x 10^5 \; N/m^2)$$

Assume that the inflow is uniform $\lambda_H = \frac{v_H}{OR}$

- (a) Find the non-dimensional pressure change $\Delta p/p_{\infty}$ across the rotor disk.
- Find the value w of the induced velocity far below the rotor, according to the (b) momentum theory.
- (c) Find the thrust coefficient C_T.
- 3000: 1,533 = Find the (local) lift coefficient c_t at $r = \frac{1}{2}R$. (d)
- Find the (local) blade pitch angle θ at $r = \frac{1}{2}R$, in degrees. (e)
- Find the ratio C_{R_b} / C_{R_b} of the profile-power coefficient to the induced-power (f) coefficient.

2.

For a hovering helicopter with coaxial rotors, estimate the hovering horsepower required and the pitch settings for the rotor blades if

c = 25"

R = 185"

b = 2 blades per rotor

T = 6500 lb (total); RPM = 300

 $\theta = \theta_t / (r/R)$ (ideal twist)

 $\rho = 0.00238 \text{ slugs/ft}^3$

 $C_{d0} = 0.012$ (independent of α)

a = 5.73 (per radian)

Neglect slipstream contractions in calculating rotor interference effects, but discuss qualitatively its influence on required θ . You can also assume that each rotor produces 3250 lbs of thrust.

3. Explain the reason why the plot shown in Lecture Note p. 36f appears in a decreasing fashion for v/v_H when it is in either vertical climb ($V/v_H > 0$.) or unpowered descent ($V/v_H < -2$.) regimes?