Physical Chemistry of Materials 2

Due date: October 5, 2012

Homework \#2

1. Evaluate the translational partition function for H_{2} confined to a volume of $100 \mathrm{~cm}^{3}$ at 298 K. Perform the same calculation for N_{2} under identical conditions.
2. Calculate the rotational partition function for SO_{2} at 298 K where $B_{\mathrm{A}}=2.03 \mathrm{~cm}^{-1}, B_{\mathrm{B}}=0.344$ cm^{-1}, and $B_{\mathrm{C}}=0.293 \mathrm{~cm}^{-1}$.
3. Evaluate the vibrational partition function for SO_{2} at 298 K where the vibrational frequencies are 519,1151 , and $1361 \mathrm{~cm}^{-1}$.
4. (a) We have made the assumption that the harmonic oscillator model is valid such that anharmonicity can be neglected. However, anharmonicity can be included in the expression for vibrational energies. The energy levels for an anharmonic oscillator are given by

$$
\varepsilon_{n}=h c \tilde{v}\left(n+\frac{1}{2}\right)-h c \tilde{\chi} \tilde{v}\left(n+\frac{1}{2}\right)^{2}+\cdots
$$

Neglecting zero point energy, the energy levels become $\varepsilon_{n}=h c \tilde{v} n-h c \tilde{\chi} \tilde{v} n^{2}+\cdots$. Using the preceding expression, demonstrate that the vibrational partition function for the anharmonic oscillator is

$$
q_{v, \text { anharmonic }}=q_{v, \text { harm }}\left(1+\beta h c \tilde{\chi} \tilde{v} q_{v, h a r m}^{2}\left(e^{-2 \beta \tilde{v} n}+e^{-\beta \tilde{v} n}\right)\right)
$$

In deriving the preceding result, the following series relationship will prove useful:

$$
\sum_{n=0}^{\infty} n^{2} x^{n}=\frac{x^{2}+x}{(1-x)^{3}}
$$

(b) For $\mathrm{H}_{2}, \tilde{v}=4401.2 \mathrm{~cm}^{-1}$ and $\tilde{\chi} \tilde{v}=121.3 \mathrm{~cm}^{-1}$. Use the result from (a) to determine the percent error in q_{v} if anharmonicity is ignored.
5. Determine the total molecular partition function for gaseous $\mathrm{H}_{2} \mathrm{O}$ at 100 K confined to a volume of $1 \mathrm{~cm}^{3}$. The rotational constants for water are $B_{\mathrm{A}}=27.8 \mathrm{~cm}^{-1}, B_{\mathrm{B}}=14.5 \mathrm{~cm}^{-1}$, and $B_{C}=9.95 \mathrm{~cm}^{-1}$. The vibrational frequencies are 1615, 3694, and $3802 \mathrm{~cm}^{-1}$. The ground electronic state is non-degenerate.
6. Derive the partition function for a monatomic van der Waals gas:

$$
Q=\frac{1}{N!}\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 N / 2}(V-N b)^{N} e^{a N^{2} / V k T}
$$

where a and b are the van der Waals constants.
7. Solve the problems in Atkin's $9^{\text {th }}$ edition: 15.14, 15.22, 16.18.

