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12.5 Is the following a theorem : An approximation algorithm
designed using an LP-relaxation cannot achieve a better
approximation guarantee than the integrality gap of the relaxation.
Hint: In principle it may be possible to show,, using additional
structural properties, that whenever an instance has a bad gap, the
cost of the solution found by the algorithm is much less that
aOPT, where « is the integrality gap of the relaxation.(Observe
that if the instance has a bad gap, the cost of the solution found
cannot be much less than «OPT¢

12.6Use the max-flow min-cut theorem to derive Menger's theorem:
Theorem. Let G = (V, E) be a directed graph with s,t € V.
Then, the maximum number of edge-disjoint (vertex-disjoint) s-t
paths is equal to the minimum number of edges (vertices) whose
removal disconnects s from t.
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12.9

1. Let G = (V, E) be an undirected graph, with weights w, on
edges. The following is an exact LP-relaxation for the problem of
finding a maximum weight matching in G.(By e: e € S we men
edges ethat have both endpoints in S.)

max D e WeXe
s.t Doexe <1 e : incident at v eV
Yexe <BEL e c 5V, |S|: odd
Xe >0 ecE

Obtain the dual of this LP. If the weight function is integral, the
dual is also exact. Observe that Theorem 1.7 follows form these
facts.
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2. Assume that |V/| is even. The following is an exact
LP-relaxation for the minimum weight perfect matching problem in
G (a matching is perfect if it matches all vertices). Obtain the
dual of this LP. Use complementary slackness conditions to give
conditions satisfied by a pair of optimal primal (integral) and dual
solutions for both formulations.

min Y eWeXe
s.t Texe =1 e : Incident at v € V
Y e Xe <(|S‘ D eeScV,|S|:odd
Xe >0 ec E
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13.2 Give an example in which the dual solution, price(e), for each
element e, computed by Algorithm 2.2 overpacks some sets, S, by
a factor of essentially Hs

13.3 Give examples to show that the lower bound used by
Algorithm 2.2, y, can be smaller that OPT by a factor of O(log n)

14.1 Modify Algorithm 14.1 so that is picks all sets that are
nonzero in the fractional solution. Show that the algorithm also
achieves a factor of f.

Hint: Use the primal complementary slackness conditions to prove
this.
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14.2 consider the collection of sets, C, picked by the randomized
rounding algorithm. Show that with some constant probability, C
covers at least half the elements at a cost of at most O(OPT.

14.4 Give a (non-bipartite) tight example for the
half-integrality-based algorithm for weighted vertex cover

14.5 Give a polynomial time algorithm for the following problem.
Given a graph G with nonnegative vertex weights and a valid,

though not necessarily optimal, coloring of G, find a vertex cover
of weight < (2 — 2)OPT, where k is the number of colors used.
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15.1 This extends Exercise 12.4. Show that if x and y are primal
and dual feasible solutions and satisfy the conditions of Section
15.2 with « =1 and B = f, then y pays for x at a rate of f, i.e.

ZC(S)XS < f-Zye

S

15.4 Give a tight example for Algorithm 15.2 in which f is a fixed
constant(for the infinite family constructed in Example 15.4, f is
unbounded)
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