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Home Work

1.1 Give a factor 1/2 algorithm for the following.
Problem 1.9(Acyclic subgraph) Give a directed graph
G = (V ,E ), pick a maximum cardinality set of edges from E so
that the resulting subgraph is acyclic.

1.3 Consider the following factor 2 approximation algorithm for the
cardinality vertex cover problem. Find a depth first search tree in
the given graph, G , and indeed a vertex for G and |S | ≤ 2·OPT.

1.13 Let L be the language consisting of all prime numbers. Show
that L ∈ NP.
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2.1 Given an undirected graph G = (V ,E ), the cardinality
maximum cut problem asks for a partition of V into sets S and S
so that the number of edges running between these sets is
maximized. Consider the following greedy algorithm for this
problem. Here v1 and v2 are arbitrary vertices in G , and for
A ⊂ V , d(v ,A) denotes the number of edges running between
vertex v and set A.

Algoruthm 2.13
1. Initialization:

A← {v1}
B ← {v2}

2. For v ∈ V − {v1, v2} do:
if d(v ,A) ≥ d(v ,B) then B ← B ∪ {v}
else A← A ∪ {v}.

3. Output A and B.
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2.2 Consider the following algorithm for the maximum cut
problem, based on the of local search. Given a partition of V into
sets, the basic step of the algorithm, called flip, is that of moving a
vertex from one side of the other. The following algorithm finds a
locally optimal solution under the flip operation, i.e., a solution
which cannot be improved by a single flip.
The algorithm starts with an arbitary of V . While there is a vertex
such that flipping it increase the size of the cut, the algorithm flips
sych a vertex. (Observe the a vertex qualities for a flip if it has
more neighbors in its own partition than in the other side.) The
algorithm terminates when no vertex qualities for a flip. Show that
this algorithm terminates in polynomial time, and achieves an
approximation guarantee of 1/2.
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2.3 Consider the following generalization of the maximum cut problem.
Problem 2.14(MAX k-CUT Given an undirected graph G = (V , E) with
nonnegative edge costs, and on integer k, find a partition of V into sets
S1, . . . , Sk so that the total cost of edges running between these sets is
maximized.
Give a greedy algorithm for this problem that achieves a factor of (1- 1

k
). Is the

analysis of your algorithm of factor 1/4.

2.13 Use layering to get a factor f approximation algorithm for set cover, where
f is the frequency of the most frequent element. Provide a tight example for
this algorithm.

3.2 Let G = (V , E) be a graph with nonnegative edge costs. S , the senders and

R, the receivers, are disjoint subsets of V . The problem is to find a minimum

cost subgraph of G that has a path connecting each receiver to a sender (any

sender suffices). Partition the instances into two cases: S ∪ R = V and

S ∪ V 6= V . Show that these two cases are in P and NP-hard, respectively.
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3.3 Give an approximation factor preserving reduction from the set cover
problem to the following problems, thereby showing that it is unlikely to have a
better approximation guarantee than O(logn).
Problem 3.14 (Directed Steiner tree) G = (V , E) is a directed graph with
nonnegative edge costs. The vertex set V is partitioned into two sets, required
and Steiner. One of the required vertices, r , is special. The problem is to find a
minimum cost tree in G rooted into r that contains all the required vertices
and any subset if the Steiner vertices.

3.6 Give an O(logn) factor approximation algorithm for the following problems.

Problem 3.15 (Asymmetric TSP) We are given a directed graph G on vertex

set V , with a nonnegative cost specified for edge (u → v), for each pair

u, v ∈ V . The edge costs satisfy the directed triangle inequality, i.e., for any

three vertices u, v , and w , cost(u → v) ≤ cost(u → w)+cost(w → v). The

problem is to find a minimum cost cycle visiting every vertex exactly once.
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