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12.5 Is the following a theorem : An approximation algorithm
designed using an LP-relaxation cannot achieve a better
approximation guarantee than the integrality gap of the relaxation.
Hint: In principle it may be possible to show,, using additional
structural properties, that whenever an instance has a bad gap, the
cost of the solution found by the algorithm is much less that
αOPT , where α is the integrality gap of the relaxation.(Observe
that if the instance has a bad gap, the cost of the solution found
cannot be much less than αOPTf

12.6Use the max-flow min-cut theorem to derive Menger’s theorem:
Theorem. Let G = (V ,E ) be a directed graph with s, t ∈ V .
Then, the maximum number of edge-disjoint (vertex-disjoint) s-t
paths is equal to the minimum number of edges (vertices) whose
removal disconnects s from t.
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12.9
1. Let G = (V ,E ) be an undirected graph, with weights we on
edges. The following is an exact LP-relaxation for the problem of
finding a maximum weight matching in G .(By e : e ∈ S we men
edges ethat have both endpoints in S .)

max
∑

e wexe

s.t
∑

e xe ≤ 1 e : incident at v ∈ V∑
e xe ≤ (|S |−1)

2 e ∈ S ⊂ V , |S | : odd
xe ≥ 0 e ∈ E

Obtain the dual of this LP. If the weight function is integral, the
dual is also exact. Observe that Theorem 1.7 follows form these
facts.
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2. Assume that |V | is even. The following is an exact
LP-relaxation for the minimum weight perfect matching problem in
G (a matching is perfect if it matches all vertices). Obtain the
dual of this LP. Use complementary slackness conditions to give
conditions satisfied by a pair of optimal primal (integral) and dual
solutions for both formulations.

min Σewexe

s.t Σexe = 1 e : incident at v ∈ V

Σexe ≤ (|S |−1)
2 e ∈ S ⊂ V , |S | : odd

xe ≥ 0 e ∈ E
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13.2 Give an example in which the dual solution, price(e), for each
element e, computed by Algorithm 2.2 overpacks some sets, S , by
a factor of essentially H|S |

13.3 Give examples to show that the lower bound used by
Algorithm 2.2, y , can be smaller that OPT by a factor of O(log n)

14.1 Modify Algorithm 14.1 so that is picks all sets that are
nonzero in the fractional solution. Show that the algorithm also
achieves a factor of f .
Hint: Use the primal complementary slackness conditions to prove
this.
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14.2 consider the collection of sets, C , picked by the randomized
rounding algorithm. Show that with some constant probability, C
covers at least half the elements at a cost of at most O(OPT .

14.4 Give a (non-bipartite) tight example for the
half-integrality-based algorithm for weighted vertex cover

14.5 Give a polynomial time algorithm for the following problem.
Given a graph G with nonnegative vertex weights and a valid,
though not necessarily optimal, coloring of G , find a vertex cover
of weight ≤ (2− 2

k )OPT , where k is the number of colors used.
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15.1 This extends Exercise 12.4. Show that if x and y are primal
and dual feasible solutions and satisfy the conditions of Section
15.2 with α = 1 and β = f , then y pays for x at a rate of f , i .e.∑

S

c(S)xS ≤ f ·
∑

e

ye

15.4 Give a tight example for Algorithm 15.2 in which f is a fixed
constant(for the infinite family constructed in Example 15.4, f is
unbounded)
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