446.686A Design For Manufacturing Development of portable golf ball case to increase driving distance 2008-03-31 2006-20918 Ji-Seok Kim 2007-20824 Kyung-Tae Lee

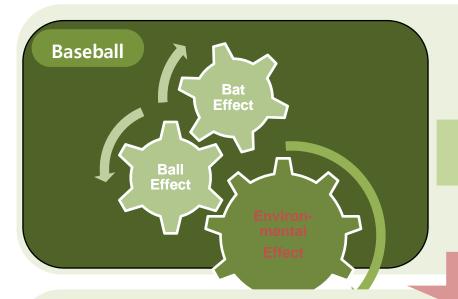
446.686A Design For Manufacturing 2008.03.31 1st Presentation Ji-Seok Kim, Kyung-Tae Lee

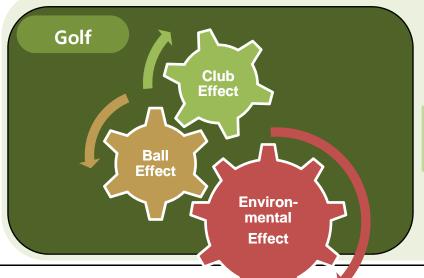
Contents

- Research Background
- Conceptual structure
- Market Research
- Project Objectives
- Bubble Diagram
- Experiment Plan
- Plans

Research Background

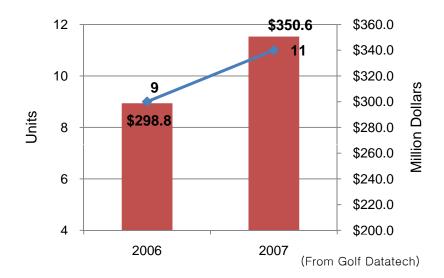
Environmental effects on baseball games


- Humidity $\uparrow \rightarrow$ air density \downarrow , drag \downarrow , expected to travel far
- But, when balls kept in specified temperature, humidity conditions, humidity ↑ → balls get heavier, easier to grip, allowing greater spin
 - Case of humidor in Coors Field in Denver



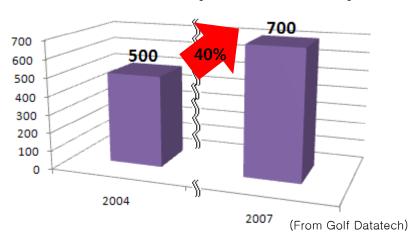
Conceptual structure

Better Performance!!

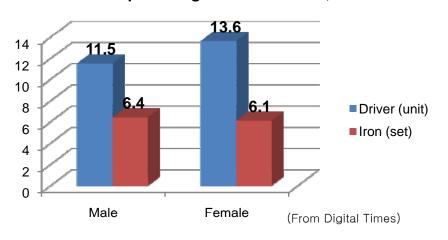


Better
Performance!?

Market Research

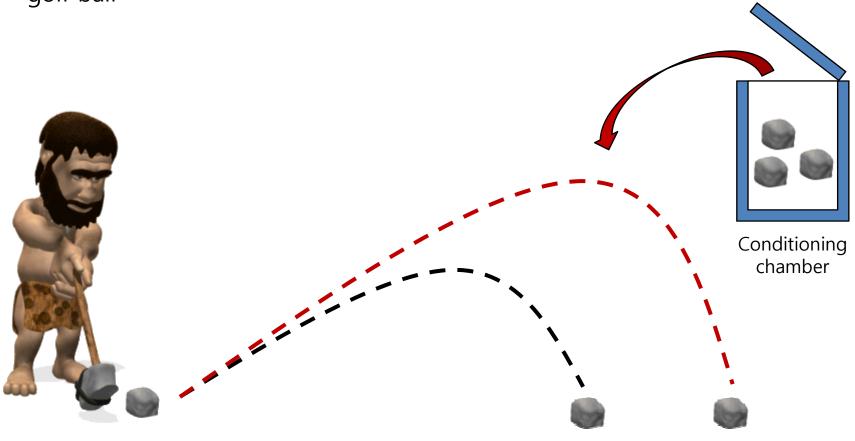

World Big 3 golf Market

- U.S , Japan, Korea
- Continuous growth
 - Ex) Korea
- Golf Ball Sales in 2007



Demand of club by improving flying distance and precision

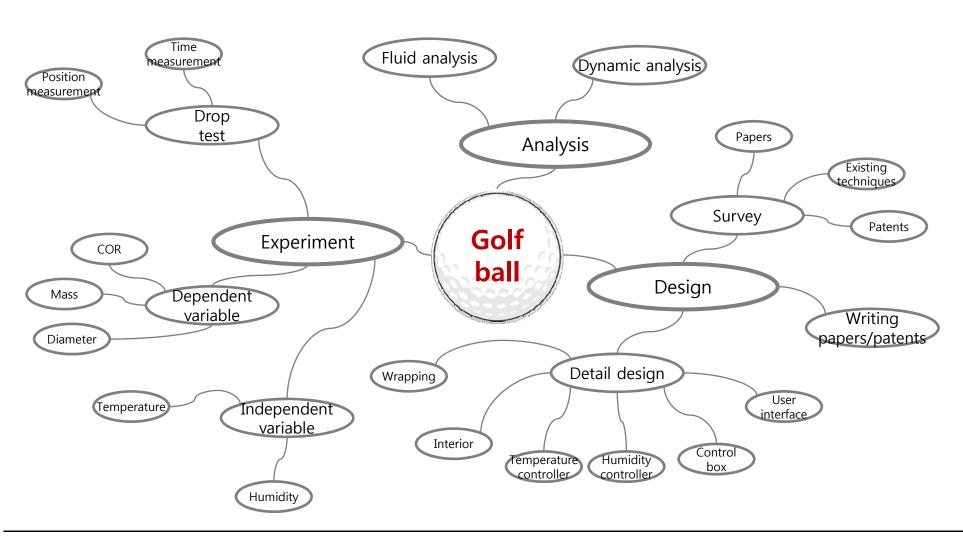
Golf club market (million dollars)


Consumption of golf club in Korea, 2007

Project Objective

Vision statement

 Development of portable golf ball case to increase driving distance of golf ball

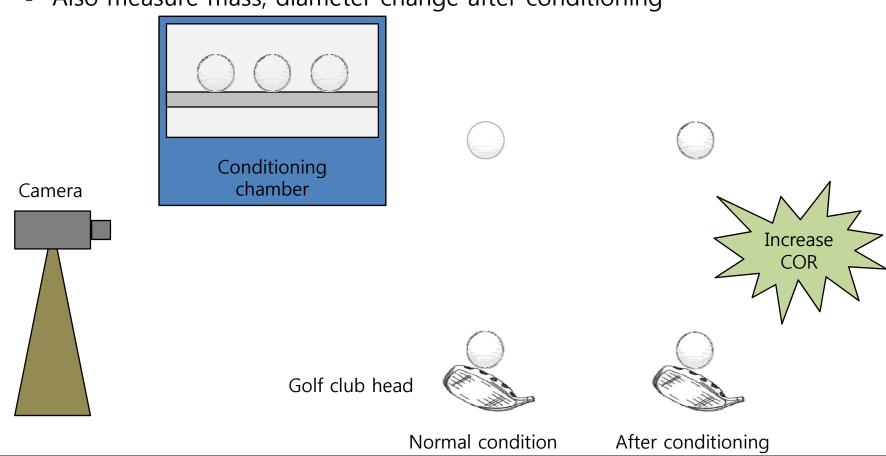


Project Objective (Con't)

Mission Statement

Product description	 Development of portable golf ball case to increase driving distance of golf ball
Key business goal	New, cheap method to increase driving distance
Target market for the product	• USA, Japan, and Korea golf clubs
Assumptions and constraints	Using same ball, same driver
Stakeholder	Golf ball manufacturing companies, golfers

Bubble Diagram



Experiment plan

* COR: Coefficient of Resistance

Drop test

- Measuring velocity to calculate COR*
- Also measure mass, diameter change after conditioning

Plans

Dates		March						April					May				June	
Plans	1	2		3	4	5	6	:	7	8	9	10	11	12	13	14	15	
Concept generation		:		:		:		:		:	:		:	:	:			
- Mission statement & Brainstorming										:			:					
- Market survey				1						:			:					
		:	:	:		:		:		:	:		:	:	:			
Design & analysis				1		:		i		:			:	:	:			
- Conceptual design				- 1									:		:			
- Detail design													:		:			
- Finite element analysis				į														
										:			:		:			
Finding conditions				1									:					
- Finding optimal temperature conditions				į						:					:			
- Finding optimal humidity conditions				:						:			:					
				:		:		•		:			:	:	:			
Prototype		:	į	:		:		:		:			:		:			
- Prototype manufacturing		:	į	:				:		:			:					
- Evaluation		:	:	:		:		:		:	:		:					
		:	:	į		<u>:</u>		:		:	<u>:</u>		:	:	<u>:</u>			
Presentation		:	:					:			Ė		:					

446.686A Design For Manufacturing 2008.03.31 1st Presentation Ji-Seok Kim, Kyung-Tae Lee

Thank You!