Homework set 1 (David K. Cheng, Fundamentals of Engineering Electromagnetics)

P. 2-1 A rhombus is an equilateral parallelogram. Denote two neighboring sides of a rhombus by vectors A and B

- a) Verify that the two diagonals are $\mathbf{A} + \mathbf{B}$ and $\mathbf{A} \mathbf{B}$.
- b) Prove that the diagonals are perpendicular to each other.

P. 2-4 Let unit vectors \mathbf{a}_A and \mathbf{a}_B denote the directions of vectors A and B in the xy-plane that make angles α and β , respectively, with the x-axis.

- a) Obtain a formula for the expansion of the cosine of the difference of two angles, $\cos(\alpha \beta)$. By taking the scalar product $\mathbf{a}_A \cdot \mathbf{a}_B$.
- b) Obtain a formula for $\sin(\alpha \beta)$ by taking the vector product $\mathbf{a}_{B} \times \mathbf{a}_{A}$.
- P. 2-7 Given vector $\mathbf{A} = \mathbf{a}_x 5 \mathbf{a}_y 2 + \mathbf{a}_z$, find the expression of
 - a) a unit vector $\mathbf{a}_{\scriptscriptstyle B}$ such that $\mathbf{a}_{\scriptscriptstyle B} \parallel \mathbf{A}$, and
 - b) a unit vector $\mathbf{a}_{_C}$ in the xy-plane such that $\mathbf{a}_{_C} \perp \mathbf{A}$.

P. 2-8 Decompose vector $\mathbf{A} = \mathbf{a}_x 2 - \mathbf{a}_y 5 + \mathbf{a}_z 3$ into two components, \mathbf{A}_1 and \mathbf{A}_2 that are, respectively, perpendicular and parallel to another vector $\mathbf{B} = -\mathbf{a}_x + \mathbf{a}_y 4$.

P. 2-13 Express the r-component, A_r , of a vector **A** at (r_1, ϕ_1, z_1)

- a) in terms of A_x and A_y in Cartesian coordinates, and
- b) in terms of A_R and A_{θ} in spherical coordinates.
- 6) By using the representations of summation convention and Levi-Civita symbol, prove that the scalar triple product $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ can be calculated by the following determinant in Cartesian coordinate system.

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \begin{vmatrix} \mathbf{A}_{x} & \mathbf{A}_{y} & \mathbf{A}_{z} \\ \mathbf{B}_{x} & \mathbf{B}_{y} & \mathbf{B}_{z} \\ \mathbf{C}_{x} & \mathbf{C}_{y} & \mathbf{C}_{z} \end{vmatrix}$$