Homework set 1 ( David K. Cheng, Fundamentals of Engineering Electromagnetics )
P. 2-1 A rhombus is an equilateral parallelogram. Denote two neighboring sides of a rhombus by vectors $A$ and $B$
a) Verify that the two diagonals are $\mathbf{A}+\mathbf{B}$ and $\mathbf{A}-\mathbf{B}$.
b) Prove that the diagonals are perpendicular to each other.
P. 2-4 Let unit vectors $\mathbf{a}_{A}$ and $\mathbf{a}_{B}$ denote the directions of vectors $A$ and $B$ in the xy-plane that make angles $\alpha$ and $\beta$, respectively, with the $x$-axis.
a) Obtain a formula for the expansion of the cosine of the difference of two angles, $\cos (\alpha-\beta)$. By taking the scalar product $\mathbf{a}_{A} \cdot \mathbf{a}_{B}$.
b) Obtain a formula for $\sin (\alpha-\beta)$ by taking the vector product $\mathbf{a}_{B} \times \mathbf{a}_{A}$.
P. 2-7 Given vector $\mathbf{A}=\mathbf{a}_{x} 5-\mathbf{a}_{y} 2+\mathbf{a}_{z}$, find the expression of
a) a unit vector $\mathbf{a}_{B}$ such that $\mathbf{a}_{B} \| \mathbf{A}$, and
b) a unit vector $\mathbf{a}_{C}$ in the xy-plane such that $\mathbf{a}_{C} \perp \mathbf{A}$.
P. 2-8 Decompose vector $\mathbf{A}=\mathbf{a}_{x} 2-\mathbf{a}_{y} 5+\mathbf{a}_{z} 3$ into two components, $\mathbf{A}_{1}$ and $\mathbf{A}_{2}$ that are, respectively, perpendicular and parallel to another vector $\mathbf{B}=-\mathbf{a}_{x}+\mathbf{a}_{y} 4$.
P. 2-13 Express the r-component, $A_{r}$, of a vector $\mathbf{A}$ at $\left(r_{1}, \phi_{1}, z_{1}\right)$
a) in terms of $A_{x}$ and $A_{y}$ in Cartesian coordinates, and
b) in terms of $A_{R}$ and $A_{\theta}$ in spherical coordinates.
6) By using the representations of summation convention and Levi-Civita symbol, prove that the scalar triple product $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$ can be calculated by the following determinant in Cartesian coordinate system.

$$
\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{lll}
\mathbf{A}_{x} & \mathbf{A}_{y} & \mathbf{A}_{z} \\
\mathbf{B}_{x} & \mathbf{B}_{y} & \mathbf{B}_{z} \\
\mathbf{C}_{x} & \mathbf{C}_{y} & \mathbf{C}_{z}
\end{array}\right|
$$

