P. 2-18 Given a scalar field $V=2 x y-y z+x z$
a) find the vector representing the direction and the magnitude of the maximum rate of increase of V at point $P(2,-1,0)$, and
b) find the rate of increase of V at point $P(2,-1,0)$ in the direction toward the point $Q(0,2,6)$.
P. 2-20 Find the divergence of the following radial fields:
a) $f_{1}(\mathbf{R})=\mathbf{a}_{R} R^{n}$,
b) $f_{2}(\mathbf{R})=\mathbf{a}_{R} k / R^{2}$, where k is a constant.
P. 2-21 Given a vector field $\mathbf{F}=\mathbf{a}_{x} x y-\mathbf{a}_{y} y z+\mathbf{a}_{z} z x$,
a) compute the total outward from the surface of a unit cube in the first octant with one corner at the origin, and
b) find $\nabla \cdot \mathbf{F}$ and verify the divergence theorem.
P. 2-23 For a vector function $\mathbf{A}=\mathbf{a}_{z} Z$,
a) find $\oint \mathbf{A} \cdot d \mathbf{s}$ over the surface of a hemispherical region that is the top half of a sphere of radius 3 centered at the origin with its flat base coinciding with the $x y$-plane,
b) find $\nabla \cdot \mathbf{A}$, and
c) verify the divergence theorem.
P. 2-26 Assume a vector field $\mathbf{A}=\mathbf{a}_{x}\left(2 x^{2}+y^{2}\right)+\mathbf{a}_{y}\left(x y-y^{2}\right)$,
a) Find $\oint \mathbf{A} \cdot d l$ around the triangular contour shown in Fig. 2-27
b) Find $\oint(\nabla \times \mathbf{A}) \cdot d \mathbf{s}$ over the triangular area.
c) Can \mathbf{A} be expressed as the gradient of a scalar? Explain.

Fig. 2-27 Graph for Problem P. 2-26
P. 2-29 For a scalar function f and a vector function \mathbf{G}, prove

$$
\nabla \times(f \mathbf{G})=f(\nabla \times \mathbf{G})+(\nabla f) \times \mathbf{G}
$$

In Cartesian coordinates. In addition, also prove (2-115) by using summation convention and Levi-Civita symbol $\varepsilon_{i j k}$.
P. 2-30 Given a vector function

$$
\mathbf{F}=\mathbf{a}_{x}\left(x+3 y-c_{1} z\right)+\mathbf{a}_{y}\left(c_{2} x+5 z\right)+\mathbf{a}_{z}\left(2 x-c_{3} y+c_{4} z\right)
$$

a) determine c_{1}, c_{2}, and c_{3} if \mathbf{F} is irrotational, and
b) determine c_{4} if \mathbf{F} is also solenoidal.

