P. 2-18 Given a scalar field $V=2 x y-y z+x z$
a) Find the vector representing the direction and the magnitude of the maximum rate of increase of V at point $P(2,-1,0)$, and
find ∇V at $P(2,-1,0)$

$$
\nabla V=\left(\hat{x} \frac{\partial}{\partial x}+\hat{y} \frac{\partial}{\partial y}+\hat{z} \frac{\partial}{\partial z}\right) V=\hat{x}(2 y+z)+\hat{y}(2 x-z)+\hat{z}(x-y)
$$

Magnitude $=|\nabla V|$ at $P(2,-1.0)=\sqrt{(\nabla V)_{x}^{2}+(\nabla V)_{y}^{2}+(\nabla V)_{z}^{2}}$

$$
=\sqrt{(-2)^{2}+4^{2}+(2+1)^{2}}=\sqrt{29}
$$

b) Find the rate of increase of V at point $P(2,-1,0)$ in the direction toward the point $Q(0,2,6)$.

Find $(\nabla V) \cdot \vec{a}_{P Q}$ at $P(2,-1,0)$ and $Q(0,2,6)$
Vector from P to $\mathrm{Q}=\overrightarrow{P Q}=\hat{x}(-2)+\hat{y} 3+\hat{z} 6$
Unit vector from P to $Q=\vec{a}_{P Q}=\frac{\overrightarrow{P Q}}{|\overrightarrow{P Q}|}=\frac{\overrightarrow{P Q}}{\sqrt{(-2)^{2}+3^{2}+6^{2}}}=\frac{1}{7}(-\hat{x} 2+\hat{y} 3+\hat{z} 6)$
$\therefore(\nabla V) \cdot \vec{a}_{P Q}$ at $P(2,-1,0)=[\hat{x}(-2)+\hat{y} 4+\hat{z} 3] \cdot \frac{1}{7}(-\hat{x} 2+\hat{y} 3+\hat{z} 6)$

$$
=\frac{1}{7}(4+12+18)=\frac{34}{7}
$$

P. 2-20 Find the divergence of the following radial fields:

Find the divergence in spherical coordinates
a) $f_{1}(\vec{R})=\hat{R} R^{n} \equiv \vec{A}$
$\nabla \cdot \vec{A}=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} A_{R}\right)=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} R^{n}\right)=(n+2) R^{n-1}$
b) $f_{2}(\vec{R})=\hat{R} \frac{k}{R^{2}} \equiv \vec{B}$
$\nabla \cdot \vec{B}=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} B_{R}\right)=\frac{1}{R^{2}} \frac{\partial}{\partial R}\left(R^{2} \frac{k}{R^{2}}\right)=0$

