1.

Given: $\mathrm{a}=\mathrm{A}-6 \mathrm{t}^{2}$; at $\mathrm{t}=0 \mathrm{~s}, \mathrm{x}=8 \mathrm{~m}, \quad v=0$
at $t=1 \mathrm{~s}, \quad v=30 \mathrm{~m} / \mathrm{s}$
Find: (a) \mathbf{t} when $v=0$
(b) Total distance traveled when $t=5 \mathrm{~s}$

We have: $a=A-6 t^{2}$; where $A=$ constant

$$
\frac{d v}{d t}=a=A-6 t^{2}
$$

At $t=0, v=0 ; \int_{0}^{v} d v=\int_{0}^{t}\left(A-6 t^{2}\right) d t$ Or $\quad v=A t-2 t^{2} \quad(\mathrm{~m} / \mathrm{s})$

At $t=1, v=30 \mathrm{~m} / \mathrm{s} ; \quad 30=\mathrm{A}(1)-2(1)^{3}$

$$
\text { So, } \quad A=32 \mathrm{~m} / \mathrm{s}^{2}
$$

Therefore, $\quad \mathbf{v}=\mathbf{3 2 t} \mathbf{- 2 \mathbf { t } ^ { \mathbf { 3 } } (\mathrm { m } / \mathrm { s })}$
Also, $\frac{\mathrm{dx}}{\mathrm{dt}}=\mathrm{v}=32 \mathrm{t}-2 \mathrm{t}^{3}$
At $\mathrm{t}=0, \mathrm{x}=8 \mathrm{~m} ; \int_{0}^{\mathrm{x}} \mathrm{dx}=\int_{0}^{\mathrm{t}}\left(32 \mathrm{t}-2 \mathrm{t}^{3}\right) \mathrm{dt}$
Therefore, $\mathbf{x}=\mathbf{8 + 1 6 t}{ }^{2}-\frac{1}{2} t^{4}(\mathrm{~m})$
(a) When $v=0 ; 32 t-2 t^{3}=2 t\left(16-t^{2}\right)=0$
(b) At $\mathrm{t}=4 \mathrm{~s} ; \mathrm{x}_{4}=8+16(4)^{2}-(1 / 2)(4)^{4}=136 \mathrm{~m}$ $t=5 \mathrm{~s} ; \mathrm{x}_{5}=8+16(5)^{2}-(1 / 2)(5)^{4}=95.5 \mathrm{~m}$

Now we observe that $0<t<4 s ; \quad v>0$
$4<t<5 s ; v<0$

Then, $\quad x 4-x 0=136-8=128 \mathrm{~m}$ $|x 5-\mathrm{x} 4|=|95.5-136|=40.5 \mathrm{~m}$

Therefore, total distance traveled $=(128+40.5)=168.5 \mathbf{m}$
2. Given: $a=-\frac{5}{2 v_{0}-v}=\frac{d v}{d t}$ or $d t=-\frac{1}{5}\left(2 v_{0}-v\right) d v$

Integrating, using appropriate limits, $\quad \int_{0}^{t} d t=-\int_{V_{0}}^{v} \frac{1}{5}\left(2 v_{0}-V\right) d V$

$$
t=-\frac{2}{5} v_{0} v+\left.\frac{1}{10} v^{2}\right|_{v_{0}} ^{v}=\frac{1}{10} v^{2}-\frac{2}{5} v_{0} v+\frac{3}{10} v_{0}^{2}
$$

(a) At $t=2 s$,

$$
\begin{equation*}
v=\frac{1}{2} v_{0} \tag{8}
\end{equation*}
$$

Then, $2=\left(\frac{1}{40}-\frac{1}{5}+\frac{3}{10}\right) V_{0}^{2}=\frac{1}{8} V_{0}^{2}$ or $V_{0}^{2}=16 \mathrm{~m}^{2} / \mathrm{s}^{2}, V_{0}= \pm 4 \mathrm{~m} / \mathrm{s}$
(b) Time to come to rest. $\quad v=0$

$$
\begin{equation*}
t=0-0+\frac{3}{10} V_{0}^{2}=\frac{3}{10}(4)^{2} \tag{0.2점}
\end{equation*}
$$

(c) Position where velocity is $1 \mathrm{~m} / \mathrm{s}$.

$$
v d v=a d x \text { or } d x=\frac{v d v}{a}=-\frac{1}{5}\left(2 v_{0}-v\right) v d v
$$

Integrating, using appropriate limits,

$$
\begin{aligned}
\int_{0}^{x} d x & =-\frac{1}{5} \int_{v_{0}}^{v}\left(2 v_{0} v-v^{2}\right) d v=-\left.\frac{1}{5}\left(v_{0} v^{2}-\frac{1}{3} v^{3}\right)\right|_{v_{0}} ^{v} \\
x & =-\frac{1}{5}\left[v_{0} v^{2}-\frac{1}{3} v^{3}-\frac{2}{3} v_{0}^{3}\right]=-\frac{1}{5}\left[\pm 4 v^{2}-\frac{1}{3} v^{3}-\frac{2}{3}(\pm 64)\right]
\end{aligned}
$$

With $v=1 \mathrm{~m} / \mathrm{s}$,

$$
x=-\frac{1}{5}\left[\pm 4-\frac{1}{3} \mp \frac{128}{3}\right]
$$

$x=7.80 \mathrm{~m}$ and -7.67 m
3.
constant acceleration. Choose $t=0$ at end of powered flight.
Then, $\quad y_{1}=27.3 \mathrm{~m} \quad a=-g=-9.81 \mathrm{~m} / \mathrm{s}^{2}$
(a) When y reaches the ground, $y_{f}=0$ and $t=165$.

$$
\begin{aligned}
& y_{1}=y_{1}+v_{1} t+\frac{1}{2} a t^{2}=y_{1}+v_{1} t-\frac{1}{2} g t^{2} \\
& v_{1}=\frac{y_{f}-y_{1}+\frac{1}{2} g t^{2}}{t}=\frac{0-27.3+\frac{1}{2}(9.81)(16)^{2}}{16}=76.8 \mathrm{~m} / \mathrm{s} \quad\left(0.577_{1}\right)
\end{aligned}
$$

(b) When the rocket reaches its maximum altitude $y_{\text {max }}$,

$$
\begin{align*}
v & =0 \\
v^{2}=v_{1}^{2}+2 a\left(y-y_{1}\right) & =v_{1}^{2}-2 g\left(y-y_{1}\right) \\
y & =y_{1}-\frac{v^{2}-v_{1}^{2}}{2 g} \\
y_{\text {max }} & =27.3-\frac{0-76.8^{2}}{(2)(9.81)} \approx 328 \mathrm{~m} \tag{0.5절}
\end{align*}
$$

4.

a_{S}-covetent, $u_{B_{t=0}}=$ simais $-\left(d_{\text {annowerd }}\right)$
bowien $t=0$ and $t=2,8$ mares, finagh, 20 mm
Find a) a_{41}, a_{c}
b) Hie time at $V_{c}=0$
c) the divinnce forsyh which sick Coull have maved of this tane
sol)

$$
\begin{align*}
& d \text { walie of } x \text { at lowet support } \\
& \text { total leng-h of the cable - conslont } \\
& \left(d-x_{A}\right)+\left(x_{c}-x_{n}\right)+2 x_{c} \quad\left(\left(x_{c}-x_{b}\right)=\right.\text { consiont } \\
& \left\{u_{c}-u_{n}-2 v_{n}=0 \quad \cdots \quad(x)\right. \tag{x}\\
& 4 a_{c}-a_{g}-2 a_{k}=0 \quad(x-x)
\end{align*}
$$

a) cinue $a_{i s}=$ constant

$$
x_{0}-b_{b_{2} k}=v_{4} l_{t}+\frac{1}{2} c_{9} t^{2}
$$

$a_{c} \quad \frac{1}{4}\left(a_{8} t>a_{4}\right)=\frac{1}{4}(-2+7 n)=3$ man/s (dotinnward) $/ / \%$
b)

$$
\begin{aligned}
& v_{L}=\left(v_{t}\right)_{0}+a_{L t}, \quad t=\frac{v_{L}-\left(v_{c}\right)_{4}}{a_{c}} \\
& \text { from }(x)
\end{aligned}
$$

$$
\begin{aligned}
& O t=\frac{0-(-2)}{3}=\frac{2}{3} \operatorname{sen} 0.3 \\
& \text { c) } \\
& x_{c}-\left(x_{c}\right)_{0}-\left(a_{c}\right)_{0} t+\frac{1}{2} a_{c} t^{2}=(\rightarrow) \frac{2}{3}+\frac{1}{2} \cdot 3\left(\frac{2}{3}\right)^{2}-\frac{4}{3}+\frac{2}{3}=\frac{-\frac{2}{3} \operatorname{mon} \text { (uptannd) }}{0.3}
\end{aligned}
$$

5
Given: $a_{4}=3 t^{2} \mathrm{~mm} / \mathrm{s}^{2} \quad$ (upherad)
$a_{B}=$ constant,v_{B} (asion manof 32 mm$)=8 \mathrm{~mm} / \mathrm{s} \quad$ (dunbwatal)
Find a) ac a_{c}
b) the divance through twich thack C wall ware moved after- 35 .
scl) at
$a_{s}=$ awtan't, tien $v d v=a d x \rightarrow\left\{v d u=a \int d x\right.$

$$
\begin{aligned}
& \text { (it }{ }^{2}-\left(\omega_{b j}\right)_{2}^{?}=2 a_{5}\left[x_{0}-\left[x_{b}\right)_{0}\right] \\
& a_{8}=\frac{V_{n}^{2}-\left(V_{B}\right)_{A}^{2}}{Z\left[x_{G}-\left(X_{9} i_{c}\right]\right.}=\frac{8^{2}-0}{2(32-0)}=1 \mathrm{MmN} / \mathrm{s}^{2} \\
& \text { from (x)-proden } q \\
& a_{c}=\frac{1}{4}\left(a_{0}+2 a_{4}\right)=\frac{1}{4}\left[1+2\left(-3 t^{2}\right)\right]=\frac{1}{4}\left(1-6 t^{2}\right) \quad 05
\end{aligned}
$$

b)

$$
\begin{aligned}
& \left.v_{c}-v_{2} v_{2}\right)_{=}^{t} a_{2} d t=\frac{1}{1} t-\frac{1}{2} t^{3} \\
& v_{L}-\frac{1}{4} t-\frac{1}{2} t^{3} \rightarrow t\left(1-i t^{2}\right)=0 \quad \Rightarrow \quad t= \pm \frac{1}{\sqrt{2}}, t=\frac{1}{\sqrt{2}}-\nabla v_{2}=0 \\
& x_{c}=\int_{2}^{3}\left(\frac{1}{4} t-\frac{1}{2} t^{3}\right) d t=\int_{0}^{\frac{1}{t_{2}^{2}}}\left(\frac{1}{1} t-\frac{1}{2} t^{3}\right) d t+\int_{\frac{1}{\sqrt{2}}}^{3}\left(\frac{1}{2} t^{3}-\frac{1}{4} t\right) d t \\
& =\left[\frac{1}{5} t^{2}-\frac{1}{8} t^{4}\right]_{0}^{\frac{1}{\sqrt{2}}}+\left[\frac{1}{8} t^{+}-\frac{1}{8} t^{2}\right]_{\frac{1}{8}}^{3} \\
& =9+\frac{1}{12}=9.0625 \mathrm{~mm} \quad 05
\end{aligned}
$$

$$
\begin{aligned}
& =R\left[\left(2 \omega_{n} \sin \sin ^{2} t \operatorname{\omega in}^{2} t \cos \omega_{n} t\right) \tilde{i}+\left(2 \omega_{n} \cos \omega_{n} t-\omega_{n}^{2}+\cos \omega_{\omega} t\right)\right] k \\
& 1 V^{2}=\left[R\left(\cos \cos t-\omega_{n} t \sin \sin t\right)\right]^{2}+(c)^{2}+\left[R\left(5 \sin \operatorname{in} t+\cos _{n-t} \cos \omega_{n} t\right)^{2}\right. \\
& =R^{2}\left[\cos \sin t-2 \omega_{0} t \sin \sin _{n} t+\sigma_{0} \omega_{n} t+\omega_{n}^{2} t^{2} \sin ^{2} \sin _{0} t\right]+c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =k^{2}\left(1+\omega_{n^{3}} t^{2}\right)+c^{2} \\
& \Theta|v|=\sqrt{R^{2}\left(1+4 n^{2} t^{2}\right)+c^{2}} 0.5 \\
& \left|a^{2}\right|=R^{2}\left[\left(-2 \omega_{n} \sin \omega_{0} t-\omega_{i n}^{2} t \cos \omega_{n} t\right)^{2}+\left[2 \omega_{n} \cos \sin t-\omega_{n}^{2} t \sin \cos ^{2} t\right)^{\prime}\right] \\
& -k^{2}\left[4 \omega_{n} n^{2} \sin ^{2} \omega_{n} t+4 \omega_{n}^{3} t \sin \omega_{n} t \cos \operatorname{con} t+\omega_{n}{ }^{4} t^{2} \cos ^{3} \omega_{n} t+4 \omega_{k}^{2} \cos ^{2} \omega_{n} t\right. \\
& \left.-4 \operatorname{inn}^{3} t \sin \omega_{n} t \cos \operatorname{cin}^{2} t+\omega_{n^{4}} t^{2} \sin ^{2} \omega_{0} t\right] \\
& =k^{2}\left(4 \omega_{n}^{2}+\omega \omega_{n} 4 L^{2}\right) \\
& 0|a|=f-\cos ^{2} \sqrt{4+\cos ^{2} t^{2}} \text { a.s }
\end{aligned}
$$

7. Choose the origin at the center of the grinding wheel, so that the horizontal and vertical motions are:

$$
x-x_{0}=v_{0} \cos \alpha t, \quad \text { or } \quad v_{0}=\frac{x-x_{0}}{t \cos \alpha}
$$

And $\quad y-y_{0}=v_{0} \sin x t-\frac{1}{2} g t^{2}=\left(x-x_{0}\right) \tan \alpha-\frac{1}{2} g t^{2}$
from which

$$
t^{2}=\frac{2\left[\left(y_{0}-y\right)+\left(x-x_{0}\right) \tan \alpha\right]}{g}
$$

Data: $\alpha=-6^{\circ}, x_{0}=-20 \mathrm{~mm}, \quad y_{0}=205 \mathrm{~mm}, \quad r=\frac{1}{2} d=175 \mathrm{~mm}$

$$
g=9810 \mathrm{~mm} / \mathrm{s}^{2}
$$

(a) Stream lands at B.

$$
\begin{gathered}
x=r \sin 10^{\circ}=30.39 \mathrm{~mm} \\
y=r \cos 10^{\circ}=172.34 \mathrm{~mm} \\
t^{2}=\frac{2\left[(205-172.34)+(30.39+20) \tan \left(-6^{\circ}\right)\right]}{9810}=0.005579 \mathrm{~s}^{2} \\
t=\frac{0.07469 \mathrm{~s}}{v_{0}=} \frac{(30.29+20)}{(0.07469) \cos \left(-6^{\circ}\right)}=678.37 \mathrm{~mm} / \mathrm{s} \quad(0.5712)
\end{gathered}
$$

(b) Stream lands at c.

$$
\begin{gathered}
x=r \cos 30^{\circ}=151.55 \mathrm{~mm} \\
y=r \sin 30^{\circ}=87.5 \mathrm{~mm} \\
t^{2}=\frac{2\left[(205-87.5)+(151.55-(-10)) \tan \left(-6^{\circ}\right)\right]}{9810}=0.020279 \mathrm{~s}^{2} \\
t=0.14240 \mathrm{~s} \\
V_{0}=\frac{(151.55+20)}{(0.1424) \cos \left(-6^{\circ}\right)}=1211.34 \mathrm{~mm} / \mathrm{s} \quad(0.5712)
\end{gathered}
$$

8. \vec{v}_{F} : velocity of the ferry
$\vec{v}_{F_{R} \text { : }}$ velocity of the forty related to the river \vec{v}_{r} : velocity of the river

$$
\begin{aligned}
\overrightarrow{0}_{q} & =9.8(\text { knots }) \mathbb{Z} 10^{\circ} \\
& =\left(-9.8 \cos 70^{\circ}\right) \hat{i}+\left(-9.8 \sin 70^{\circ}\right) \hat{j} \\
\vec{v}_{t / k} & =10(\text { knots }) \Delta 30^{\circ} \\
& =\left(-10 \sin 30^{\circ}\right) \hat{i}+\left(-10 \cos 30^{\circ}\right) \hat{j}
\end{aligned}
$$

$$
\begin{aligned}
\vec{v}_{R} & =\vec{v}_{F}-\vec{v}_{F R} \\
& =\left\{\left(-9.8 \cos 70^{\circ}\right)-\left(-10 \sin 30^{\circ}\right)\right\} \hat{i}+\left\{\left(-9.8 \sin \mu 70^{\circ}\right)-\left(-10 \cos 30^{\circ}\right)\right\} \hat{j} \\
& =1.648 \hat{i}-0.549 \hat{j} \text { (knots) }
\end{aligned}
$$

9.

constraints

$$
\begin{aligned}
& 2 x_{A}+x_{B / A}=\text { const } \\
& 2 v_{A}+v_{B / A}=0 \\
& 2 a_{A}+a_{B / A}=0
\end{aligned} \Rightarrow \left\lvert\, \begin{aligned}
& \left|\overrightarrow{V_{B / A}}\right|=400 \mathrm{~mm} / \mathrm{s} \\
& \left|\overrightarrow{a_{B A}}\right|=200 \mathrm{~mm} / \mathrm{s}^{2}
\end{aligned}\right.
$$

Solution

$$
\begin{aligned}
\vec{v}_{A} & =200 \mathrm{~mm} / \mathrm{s} 2 f^{\circ} . \\
& =\left(200 \cos 25^{\circ}\right) \hat{i}+\left(-200 \sin 2 f^{\circ}\right) \hat{j} \\
\vec{v}_{B / A} & =400 \mathrm{~mm} / \mathrm{s} \Delta 40^{\circ} \\
& =\left(-400 \cos 40^{\circ}\right) \hat{i}+\left(400 \sin 40^{\circ}\right) \hat{j}
\end{aligned}
$$

(a)

$$
\begin{aligned}
\overrightarrow{V_{B}} & =\overrightarrow{v_{A}}+\overrightarrow{V_{B / A}} \\
& =\left(200 \cos 25^{\circ}-400 \cos 40^{\circ}\right) \hat{i}+\left(-200 \sin 24^{\circ}+400 \sin 40^{\circ}\right) \hat{j} \\
& =-125.157 . \hat{i}+172.591 \hat{j}(\mathrm{~mm} / \mathrm{s})
\end{aligned}
$$

(b)

$$
\begin{aligned}
\vec{a} & =150 \mathrm{~mm} / \mathrm{s}^{2} 52 t^{\circ}=150 \cos 24^{\circ} \hat{i}-150 \sin 25^{\circ} \hat{j} \\
\vec{a}_{B / A} & =200 \mathrm{~mm} / \mathrm{s}^{2} \pi 400=-300 \cos 40^{\circ} \hat{i}+300 \sin 40^{\circ} \hat{j} \\
\vec{a}_{B} & =\overrightarrow{a_{A}}+\overrightarrow{a_{B} / A} \\
& =\left(150 \cos 25^{\circ}-300 \cos 40^{\circ}\right) \hat{i}+\left(-150 \sin 25^{\circ}+300 \sin 40^{\circ}\right) \hat{j} \\
& =-93.867 \hat{i}+129.444 \hat{j}\left(\mathrm{~mm} / \mathrm{s}^{2}\right)
\end{aligned}
$$

10.

$\xrightarrow{\text { constraints }} \stackrel{y}{\longrightarrow} x$.
i) $x_{B}+\left(x_{B}-x_{A}\right)+2\left(d-x_{A}\right)=$ conat.
where d is distance of the A block from the left wall.

$$
\begin{aligned}
2 v_{B}-3 v_{A}=0 \\
2 a_{B}-3 a_{B}=0
\end{aligned} \Rightarrow \begin{aligned}
& v_{A}
\end{aligned}=\frac{2}{3} v_{B} . ~\left(\begin{array}{l}
a_{A}
\end{array}=\frac{2}{3} a_{B}=\frac{2}{3} \times 300=200\left(\mathrm{~mm} / \mathrm{s}^{2}\right)\right.
$$

a)

$$
\left\{\begin{array}{l}
2\left(d-x_{A}\right)+y_{C / A}=\text { const. } \\
-2 v_{A}+v_{C A} /=0 \\
-2 a_{A}+a_{C A}=0
\end{array} \Rightarrow Q_{C A}=400\left(\mathrm{~mm} / \mathrm{s}^{2}\right)\right\}
$$

b)

$$
\begin{aligned}
v_{A} & =U_{O A}+O_{A} t \\
& =0+200 \times 2=400(\mathrm{~mm} / \mathrm{s}) \\
\vec{U}_{A} & =400 \hat{i}(\mathrm{~mm} / \mathrm{s}) \\
U_{C A} & =U_{0 C A}+\hat{Q}_{C A A} t \\
& =0+400 \times 2=800 \mathrm{~mm} / \mathrm{s} \\
\vec{U}_{C A A} & =800 \hat{j m m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\vec{U}_{c} & =\vec{V}_{A}+\vec{V}_{C / A} \\
& =400 \hat{i}+800 \hat{j}(\mathrm{~mm} / \mathrm{s})
\end{aligned}
$$

