Given:
$$a = A - 6t^{2}$$
; at $t = 0$ s, $x = 8$ m, $v = at$
at $t = 1$ s, $v = 30$ m/s
Find: (a) t when $v = 0$
(b) Total distance traveled when $t = 5$ s
We have: $a = A - 6t^{2}$; where $A = constant$

0

We have:
$$a = A - 6t^{2}$$
; where $A = constant$
 $\frac{dv}{dt} = a = A - 6t^{2}$

At
$$t = 0, v = 0; \int_0^v dv = \int_0^t (A - 6t^2) dt$$

Or $v = At - 2t^2$ (m/s)

At
$$t = 1$$
, $v = 30$ m/s; $30 = A(1) - 2(1)^3$
So, $A = 32$ m/s²
Therefore, $v = 32t - 2t^3$ (m/s)

Also,
$$\frac{dx}{dt} = v = 32t - 2t^3$$

At $t = 0, x = 8 \text{ m}; \int_0^x dx = \int_0^t (32t - 2t^3) dt$
Therefore, $x = 8 + 16t^2 - \frac{1}{2}t^4$ (m)

(a) When
$$v = 0$$
; $32t - 2t^3 = 2t(16 - t^2) = 0$
 $t = 0$ and $t = 4 s$

(b) At
$$t = 4 s$$
; $x_4 = 8 + 16(4)^2 - (1/2)(4)^4 = 136 m$
 $t = 5 s$; $x_5 = 8 + 16(5)^2 - (1/2)(5)^4 = 95.5 m$

Now we observe that 0 < t < 4s; v > 04 < t < 5s; v < 0

Then, x4 - x0 = 136 - 8 = 128 m|x5 - x4| = |95.5 - 136| = 40.5 m

Therefore, total distance traveled = (128 + 40.5) = 168.5 m

1.

consta	ant acceleration. Choose t= 0 at end of powered flight.
	$y_1 = 27.3 \text{ m}$ $a = -g = -9.81 \text{ m/s}^2$
	y reaches the ground, $y_{+}=0$ and $t=16s$.
0	$y_{1} = y_{1} + y_{1}t + \frac{1}{2}at^{2} = y_{1} + y_{1}t - \frac{1}{2}gt^{2}$
-	
	$V_{1} = \frac{4}{4} - \frac{4}{3} + \frac{1}{3} \frac{4}{3} \frac{1}{2} = 0 - 27.3 + \frac{1}{3} (9.81) (16)^{2} = 76.8 \text{ m/s} (0.572)$
b) When	the rocket reaches its maximum altitude ymaxs
	V= 0
	$V^{2} = V_{1}^{2} + 2a(y - y_{1}) = V_{1}^{2} - 2g(y - y_{1})$
	$4 = 4_1 - \frac{\nu^2 - \nu_1^2}{2\alpha}$
	$y = y_1 - \frac{v^2 - v_1^2}{2g}$ $y_{mox} = 27.3 - \frac{0 - 76.8^2}{(2)(9.81)} \approx 328 \text{ M} \qquad (0.5\%)$
-	

5 Given $\Delta_{h} = 3t^{2} \operatorname{mals}^{L} (\operatorname{upworl})$ $\Delta_{b} = \operatorname{construc}, \quad \operatorname{Ve}_{i}(\operatorname{obser nating 32 mm}) = 8 \operatorname{mals} (\operatorname{dummard})$ Find: a) Δ_{L} is the divisors through which where C will have moved after 35. col) a) $\Delta_{b} = \operatorname{construc}, \quad \operatorname{tien} \quad \operatorname{Vdv} = \operatorname{adv} \longrightarrow [\operatorname{vdv} = \alpha] dx$ $\Delta_{b}^{*} - (\operatorname{Ve}_{b})^{*}_{*} = 2de[\frac{1}{2}a - [\frac{1}{2}b]_{*}]$ $\partial_{e} = \frac{\operatorname{Ve}_{e}^{*} - (\operatorname{Ve}_{b})^{*}_{*}}{2(2e_{e} - (2e_{e})_{*}]} = \frac{8^{*} - 0}{2(2e_{e} - (2e_{e})_{*}]} = \frac{8^{*} - 0}{2(2e_{e} - (2e_{e})_{*}]} = \frac{1}{2}(1 - 6t^{2})$ $\int_{D} \operatorname{min} (k) - \operatorname{poplen} \hat{\tau}$ $\Delta_{e} = \frac{1}{4} (de + 2a_{e}) = \frac{1}{4} [1 + 2(-3t^{*})] = \frac{1}{4} (1 - 6t^{2})$ $V_{e} - \frac{1}{4} \frac{1}{2} - \frac{1}{3} t^{3} - v + t(1 - 1t^{4}) = 0 \quad \Rightarrow \quad t = \pm \frac{1}{12} \quad t = \frac{1}{\sqrt{2}} - v \quad U_{e} = 0$ $\pi_{e} = \int_{0}^{1} (\frac{1}{4}t - \frac{1}{2}t^{3}) dt = \int_{0}^{\frac{1}{2}} (\frac{1}{4}t^{2} - \frac{1}{4}t^{2}) dt + \int_{\frac{1}{4}}^{\frac{3}{4}} (\frac{1}{4}t^{2} - \frac{1}{4}t^{2}) dt + \left[\frac{1}{4}t^{4} - \frac{1}{3}t^{2}\right]_{\frac{1}{4}}^{\frac{1}{4}}$ $= \left[\frac{1}{8}t^{2} - \frac{1}{8}t^{2}\right]_{0}^{\frac{1}{4}} + \left[\frac{1}{4}t^{4} - \frac{1}{8}t^{2}\right]_{\frac{1}{4}}^{\frac{1}{4}}$ $= 9 + \frac{1}{t_{e}} = 9 \cdot \frac{1}{4} = 9 \cdot \frac{36}{4} \cdot \frac{5}{4} = 05$

$$\begin{split} b. \vec{\tau}^{2} &= (R \pm \cos \omega_{nt} + i)\vec{\tau} + (z\vec{t}, \vec{t} + (R \pm \sin \omega_{nt} + i)\vec{t})\vec{t} \\ \vec{\nabla} &= \frac{d\tau}{dt} = R \left[(ex_{wat} - i)(x \pm \sin \omega_{nt} + i)\vec{\tau} + z_{s}^{2} + R(\sin \omega_{nt} \pm \omega_{nt} \pm \cos \omega_{nt} + i)\vec{\tau} \right] \\ \vec{\pi} - \frac{d\vec{\tau}}{dt} = R \left[(-\omega_{n} \sin \omega_{nt} \pm -\omega_{n} \sin \omega_{nt} - -\omega_{n}^{2} \pm \cos \omega_{nt} + \vec{\tau} + R(\omega_{n} \cos \omega_{nt} \pm \omega_{n} \cot \omega_{nt} + -\omega_{n}^{2} \pm \sin \omega_{nt}) \right] \\ &= R \left[(-2\omega_{n} \sin \omega_{nt} \pm -\omega_{n} \sin \omega_{nt} + -\omega_{n}^{2} \pm \cos \omega_{nt} + i)\vec{\tau} + (2\omega_{n} \cos \omega_{nt} \pm -\omega_{n}^{2} \pm \sin \omega_{nt}) \right] \\ &= R \left[(-2\omega_{n} \sin \omega_{nt} \pm -\omega_{n} \pm \cos \omega_{nt} + i)\vec{\tau} + (2\omega_{n} \cos \omega_{nt} \pm -\omega_{n}^{2} \pm \sin \omega_{nt} + i) \right] \\ &= R \left[(\cos \omega_{nt} \pm -\omega_{nt} \sin \omega_{nt} + \omega_{n}^{2} \pm i)\vec{\tau} + (2\omega_{n} \cos \omega_{nt} \pm -\omega_{n}^{2} \pm \sin \omega_{nt} + i) \right] \\ &= R^{2} \left[\cos^{2} \omega_{nt} \pm -2\omega_{nt} \sin \omega_{nt} \cos \omega_{nt} \pm \omega_{n}^{2} \pm i \cos^{2} \omega_{nt} \pm \right] \\ &= R^{2} \left[(\cos^{2} \omega_{nt} \pm -2\omega_{nt} \sin \omega_{nt} \pm \cos \omega_{nt} \pm \omega_{n}^{2} \pm i \cos^{2} \omega_{nt} \pm \right] \\ &= R^{2} \left[(4\omega_{n}^{2} \vec{\tau}) + c^{2} \right] \\ &= R^{2} \left[(4\omega_{n}^{2} \vec{\tau}) + c^{2} \right] \\ \vec{\sigma} = R^{2} \left[(-2\omega_{n} \sin \omega_{nt} + -\omega_{n}^{2} \pm \sin \omega_{nt} + i \cos \omega_{nt} \pm - i \omega_{n}^{2} \pm \sin \omega_{nt} \pm \right] \\ &= R^{2} \left[(-2\omega_{n} \sin \omega_{nt} + -\omega_{n}^{2} \pm \sin \omega_{nt} + i \cos \omega_{nt} \pm - i \omega_{n}^{2} \pm \sin \omega_{nt} \right] \\ &= R^{2} \left[(4\omega_{n}^{2} \vec{\tau}) + c^{2} \right] \\ \vec{\sigma} = R^{2} \left[(-2\omega_{n} \sin \omega_{nt} + -\omega_{n}^{2} \pm \sin \omega_{nt} \pm i \cos \omega_{nt} \pm - i \omega_{n}^{2} \pm \sin \omega_{nt} \right] \\ &= R^{2} \left[(4\omega_{n}^{2} \sin^{2} \vec{\tau}) + c^{2} \right] \\ \vec{\sigma} = R^{2} \left[(-2\omega_{n} \sin \omega_{nt} \pm - \omega_{n}^{2} \pm \sin \omega_{nt} \pm i \cos \omega_{nt} \pm - i \omega_{n}^{2} \pm \sin \omega_{nt} \right] \\ &= R^{2} \left[(4\omega_{n}^{2} \pm i - \omega_{n}^{2} \pm i \sin \omega_{nt} \pm i \cos \omega_{nt} \pm i - \omega_{n}^{2} \pm i \cos^{2} \omega_{nt} \pm i \right] \\ &= R^{2} \left[(4\omega_{n}^{2} \pm i - \omega_{n}^{2} \pm i \sin \omega_{nt} \pm i \cos \omega_{nt} \pm i \sin \omega_{nt} \pm i \sin^{2} \sin \omega_{nt} \pm i \sin \omega_{nt} \pm i \sin^{2} \sin \omega_{nt} \pm i \sin \omega_{nt} \pm i \sin^{2} \sin \omega_{nt} \pm i$$

 $(a) |a| = F_{400} \sqrt{4 + \omega_0^2 t^2} \quad a.s$

the origin at the center of the grinding wheel, so that the
stal and vortical motions are:
$\chi - \chi_0 = V_0 \cos \alpha t$, or $V_0 = \frac{\chi - \chi_0}{t \cos \alpha}$
$y - y_0 = V_0 \sin x t - \frac{1}{2}gt^2 = (x - x_0) \tan x - \frac{1}{2}gt^2$
which
$t^2 = \sum E(\psi_0 - \psi) + (x - x_0) \tan \theta$
.et
$d = -6^{\circ}$, $\chi_0 = -20 \text{ mm}$, $H_0 = 205 \text{ mm}$, $r = \frac{1}{2}d = 175 \text{ mm}$ $g = 9810 \text{ mm}/s^2$
eam lands at B.
$x = rsin 10^{\circ} = 30.39 mm$
$y = r \cos 10^{\circ} = 172.34 \text{ mm}$
$t^{2} = \frac{2 E (205 - 1/2 \cdot 34) + (30 \cdot 39 + 20) \tan (-6^{\circ})}{29} = 0.005579 \text{ s}^{2}$
9810
$\frac{t}{V_0} = \frac{(30.39+20)}{(0.07469)\cos(-6^{\circ})} = 678.37 \text{ mm/s} (0.572)$
$V_0 = \frac{(30.34 + 10)}{(0.07469) \cos(-6^{\circ})} = 678.37 \text{ mm/s} (0.572)$
ream lands at c.
$\chi = \gamma \cos 30^\circ = 151.55 \text{ mm}$
$y = rsin_{30}^{\circ} = 87.5 \text{ mm}$
$t^{2} = \frac{2E(205 - 87.5) + (151.55 - (-20))tor(-6^{\circ})7}{900} = 0.020279 S^{2}$
t = 0.14240 s
$V_{0} = \frac{(151.55 + 20)}{(0.1424)(005(-6^{\circ}))} = 1211.34 \text{ mm/s} (0.5\%)$

10.

$$\frac{constraints}{(D \times R_{B} - \pi_{A}) + 2(d - \pi_{A})} = C \text{ opst.}$$

$$\frac{D \times R_{B} + (\pi_{B} - \pi_{A}) + 2(d - \pi_{A}) = C \text{ opst.}$$

$$\frac{D \times R_{B} + (\pi_{B} - \pi_{A}) + 2(d - \pi_{A}) = C \text{ opst.}$$

$$\frac{D \times R_{B} - 3R_{B} = 0 \quad (M_{B} = \frac{2}{3}R_{B})$$

$$\frac{2R_{B} - 3R_{B} = 0 \quad (M_{B} = \frac{2}{3}R_{B}) = \frac{2}{3} \times 300 = 200(m \text{ m/s}^{2})$$

$$\frac{2c(ution}{R_{A}} = -200 \hat{i} (m \text{ m/s})$$

$$\frac{2c(ution}{R_{A}} + 2R_{A}) + y_{CA} = const.$$

$$\left\{ -2R_{A} + R_{CA} / = 0 \quad (M_{B} - \frac{2}{3}) - 2(d - \pi_{A}) + y_{CA} = const.$$

$$\left\{ -2R_{A} + R_{CA} / = 0 \quad (M_{B} - \frac{2}{3}) - 2(d - \pi_{A}) + y_{CA} = const.$$

$$\left\{ -2R_{A} + R_{CA} / = 0 \quad (M_{B} - \frac{2}{3}) - 2(d - \pi_{A}) + y_{CA} = const.$$

$$\left\{ -2R_{A} + R_{CA} / = 0 \quad (M_{B} - \frac{2}{3}) - 2(d - \pi_{A}) + \frac{2}{3}R_{B} = 0 \quad (M_{B} - \frac{2}{3}) - \frac{2}{3}R_{B} = 0 \quad (M_{B}$$

-