동역학: 과제 #2

제출 마감:10 월 6 일(월)

11.137 Pin A, which is attached to link AB, is constrained to move in the circular slot CD. Knowing that at t=0 the pin starts from rest and moves so that its speed increases at a constant rate of 20 mm/s², determine the magnitude of its total acceleration when (a) t=0, (b) t=2 s.

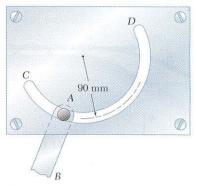


Fig. P11.137

11.161 The rotation of rod OA about O is defined by the relation $\theta = 0.5e^{-0.8t}$ sin $3\pi t$, where θ and t are expressed in radians and seconds, respectively. Collar B slides along the rod so that its distance from O is $r = 0.2 + 1.92t - 6.72t^2 + 6.4t^3$, where r and t are expressed in meters and seconds, respectively. When t = 0.5 s, determine (a) the velocity of the collar, (b) the acceleration of the collar, (c) the acceleration of the collar relative to the rod.

11.162 The oscillation of rod OA about O is defined by the relation $\theta = (4/\pi)(\sin \pi t)$, where θ and t are expressed in radians and seconds, respectively. Collar B slides along the rod so that its distance from O is r = 10/(t+6), where r and t are expressed in mm and seconds, respectively. When t=1 s, determine (a) the velocity of the collar, (b) the total acceleration of the collar, (c) the acceleration of the collar relative to the rod.

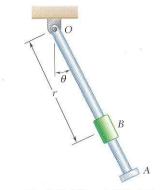
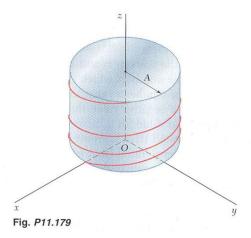



Fig. P11.161 and P11.162

11.179 The motion of a particle on the surface of a right circular cylinder is defined by the relations R = A, $\theta = 2\pi t$, and $z = At^2/4$, where A is a constant. Determine the magnitudes of the velocity and acceleration of the particle at any time t.

11.185 Block B starts from rest and moves downward with a constant acceleration. Knowing that after slider block A has moved 400 mm its velocity is 4 m/s, determine (a) the accelerations of A and B, (b) the velocity and the change in position of B after 2 s.

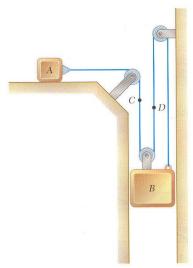


Fig. P11.185

12.15 Block A has a mass of 40 kg and block B has a mass of 8 kg. The coefficients of friction between all surfaces of contact are $\mu_s = 0.20$ and $\mu_k = 0.15$. Knowing that P = 0, determine (a) the acceleration of block B, (b) the tension in the cord.

12.16 Block A has a mass of 40 kg and block B has a mass of 8 kg. The coefficients of friction between all surfaces of contact are $\mu_s = 0.20$ and $\mu_k = 0.15$. Knowing that $\mathbf{P} = 50 \,\mathrm{N} \to$, determine (a) the acceleration of block B, (b) the tension in the cord.

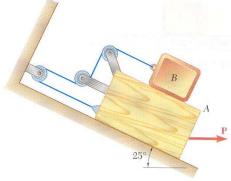


Fig. P12.15 and P12.16

12.32 A 25-kg block A rests on an inclined surface, and a 15-kg counterweight B is attached to a cable as shown. Neglecting friction, determine the acceleration of A and the tension in the cable immediately after the system is released from rest.

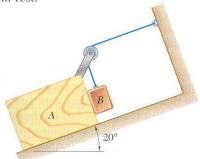


Fig. P12.32

12.46 During a high-speed chase, an 1100-kg sports car traveling at a speed of 160 km/h just loses contact with the road as it reaches the crest A of a hill. (a) Determine the radius of curvature ρ of the vertical profile of the road at A. (b) Using the value of ρ found in part a, determine the force exerted on a 70-kg driver by the seat of his 1400-kg car as the car, traveling at a constant speed of 80 km/h, passes through A.

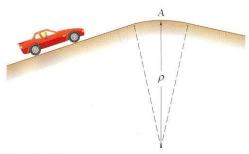


Fig. P12.46

12.59 A turntable A is built into a stage for use in a theatrical production. It is observed during a rehearsal that a trunk B starts to slide on the turntable 12 s after the turntable begins to rotate. Knowing that the trunk undergoes a constant tangential acceleration of 0.25 m/s², determine the coefficient of static friction between the trunk and the turntable.

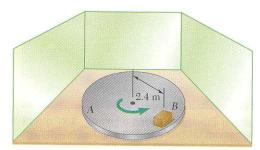


Fig. P12.59