Advanced rock mechanics

Semester 1, 2009

Homework \#3 (16 March)

due by 22 March 2009

1. Evaluate the following expressions involving the Kronecker delta $\delta_{i j}$ for a range of three on the indices.
(a) $\delta_{i i}$
(b) $\delta_{i j} \delta_{i j}$
(c) $\delta_{i j} \delta_{i k} \delta_{j k}$
2. For the permutation symbol $\varepsilon_{i j k}$ show by direct expansion that
(a) $\varepsilon_{i j k} \varepsilon_{k j}=6$
(b) $\varepsilon_{i j k} a_{j} a_{k}=0$
(c) $\operatorname{det}\left(a_{i j}\right)=\operatorname{det}(\mathbf{A})=\varepsilon_{r s t} a_{r 1} a_{s 2} a_{t 3}$
3. \mathbf{z} is the vector product of two vectors, $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right)$. Show that $\mathbf{z}=\mathbf{x} \times \mathbf{y}$ can be expressed as;
$z_{i}=\varepsilon_{i j k} x_{j} y_{k}$
