Advanced rock mechanics

Semester 1, 2009

Homework \#5 (30 March)

due by 5 April 2009

1. Show that $E=G(3 \lambda+2 G) /(\lambda+G), v=\lambda / 2 /(\lambda+G), E=9 K G /(3 K+G)$ and $v=(3 K-$ $2 G) /(6 \mathrm{~K}+2 \mathrm{G})$. Definitions of each parameters were given during the class.
2. Assuming that a rock element is subjected to $\sigma_{\mathrm{v}}=\sigma_{\mathrm{H}}$ at a depth of 2400 m and erosion causes a removal of 1200 m of overburden over millions of years, determine the stress state at a depth of 1200 m and ratio of horizontal to vertical stress after erosion. The density and Poisson's ratio of rock is $2600 \mathrm{~kg} / \mathrm{m}^{3}$ and 0.25 , respectively. Note that the answer to this question is largely open and make your own assumptions, if necessary.
