
A4: Project Management

Technical notes: This case is based on a simple project model. The case contains an

adequate analysis of the model behavior, so you will not need to simulate or analyze the

model. On the other hand, you do need to understand the model. Accordingly, we have

uploaded the model to our web site so that you can examine the structure (diagrams and

equations). Of course, feel free to play with the model as your time and interest permit.

Background. You have just been hired to manage the development of the next release of

Macrohard Word, the world’s first word processor to not have a delete capability (“If its

not hard, its not Macrohard”).

The last several releases have all been significantly late, permitting competitors to eat into

Macrohard’s market share. In addition the past several releases have required much more

staff – in terms of headcount and overtime – than budgeted. As a result expenses have

risen while revenues have shrunk. You have decided to spend some time thinking about

how to get the next release out on schedule and under budget. Your concentration is

sharpened by the knowledge that your predecessor was fired for failing to achieve these

goals.

You first talk to a number of programmers. The programmers feel that problems are

caused when new people come onto projects late in the development cycle. It takes

months for new comers to get up to speed, and in the meantime they are less productive

and generate more bugs than experienced programmers. The workload on veteran

programmers increases because there are more bugs to fix and because they need to train

and check the work of the new folks.

One programmer put it succinctly: “Releases would be completed a lot faster if you’d

just give us the people we need at the beginning of the program.”

Your sense is that most of the programmers are dedicated to the development of the

software, enjoy their work, and are willing to work long hours to complete the code. In

fact one of your colleagues suggests this is a big part of the problem. According to this

manager, “Programmers will work 24 hours straight – during which time they will

From

System Dynamics Group

Sloan School of Management

Massachusetts Institute of Technology

15.876

System Dynamics II

Prof. Jim Hines

consume a 6-pack of Jolt and several boxes of donuts. They end up tired and wired

producing more bad code than good.”

You listen to the different sides of the story and wonder how you are ever going to get a

handle on the situation. Then you remember. A few weeks ago, you sat next to an

extremely interesting MIT graduate student named Ken on a flight from Chicago to

Boston. Ken said he was learning about a way of capturing lots of viewpoints into a

single mathematical model. He called his discipline something like “system dominos” or

“sister dynamics”. Despite your haziness on the field’s name, you distinctly remember

Ken’s confidence that his approach solved tough problems.

You give Ken a call to see if he would be willing to work with you on this problem. He is

enthusiastic and is able to console you on several points almost immediately. First, Ken

says, your problem sounds like a classic project model, a class of models with which he is

rather familiar. Second, he says, it’s spring break next week so he can work with you for

a week.

Putting together the model

Ken comes out to your office during his spring break. He says the first thing to do is

simply list variables that seem to play a role in your issue. You and Ken create the

following list:

 Release date

 Workforce on the release

 New programmers

 Productivity

 Overtime

 Size of project

 Skill

 Quality

 fatigue

Ken says the next step is to choose a couple of the variables and draw “reference modes”

– rough (and idealized) graphs of behavior over time. You choose productivity, quality,

and workforce. After touching base again with a few programmers and managers, you

draw the following reference modes.

2 years

PDY

Project

start

Quality

Project

start

Actual

Project

start

Plan

Staffing

2 years

2 years

Figure 1. Reference modes for productivity, quality, and workforce.

Ken says that you’ve done a terrific job defining the problem and that finally its time to

develop some theories of what causes the problems. You bring in a couple of

programmers and managers to work with you and Ken. After several hours the group

completes a large spaghetti-like mess. The next day you and Ken pare the diagram down

to something that is clearer to read. The diagram can be built up in two “layers”:

Work
to do

Workforce
+

- Overtime
+

-

Figure 2. If there is too much work to do, managers hire more people and

programmers work longer hours

Work
to do

Workforce
+

- Overtime

+

-

Skill

-
productivity/

quality

+

-

fatigue

+

-

Figure 3. Unfortunately, hiring new people reduces average skill and overtime leads

to fatigue. Reduced skill and elevated fatigue hurt productivity and quality.

Suddenly, the whole situation seems much clearer to you. You feel energized. Ken says

the next step is to create a simulation model of the theory to help you understand the

theory more deeply. Drawing from his experience of project models, Ken helps you to

create the following model – checking from time to time with your informants when you

need a parameter or table function.

WorkToDo Doing

Done Right

HiddenBugs

Doing right

Doing wrong

Qual

Effective
people

PDY

FindBugs

BugFindTime

Des ired
People

Remaining
Time

DueDate

Workforce

Over
Time

Fatigue

Fatigue
effect qual

MaxQuality

TimeToGet
Fatigued

CumStaff
Months

<Effective people>

Fatigue effect
PDY

Normal
Productivity

Percvd
PDY

TimeToPercvPDY

InitialWorkToDo

<EffectOfFatigue
OnProductivity f>

<Time>

<OverTime f>

AvgSkill

Gaining OTJ
Experience

Skill dilution

Hiring
firing

normal skill

relative
skill

Skill effect
PDY

Skill effect
qual

Skill effect on
Productivity f

Skill effect
on quality f

TimeTo
Fire

TimeTo
Hire

<EffectOfFatigue
OnQuality f>

InitialDue
Date

<TIME
STEP>

minimum
remaining

time

Experience
of new hires

skill
dillution

time

<TIME
STEP>

hiring

Indicated
overtime

Figure 4. Schematic of the software project model.

Model Analysis. You and Ken analyze the base simulation with the following results:

A. The simulated project completes over a period of 18 months (as shown in the two

graphs below), even though the scheduled completion date is 12 months.

base

Workforce

692.67

524.20

355.73

187.26

18.79
0 9.031 18.06

Time (month)

base

CumStaffMonths

5,592

4,194

2,796

1,398

0
0 9.031 18.06

Time (month)

B. As anticipated, productivity and quality each show trouble. Surprisingly, perhaps,

both recover in the final quarter of the project (see below).

base

PDY

8,747

6,826

4,905

2,985

1,064
0 9.031 18.06

Time (month)

base

Qual

0.9

0.7557

0.6115

0.4672

0.3230
0 9.031 18.06

Time (month)

C. Interestingly, in the model problems with fatigue hurts productivity and quality much

more than skill problems

Fatigue and Skill Effects on PDY

1.5

0.4122

0 19

Time (month)

Fa tigue effec t P DY : base dm nl

Skill effe ct P DY : ba se dm nl

Fatigue and Skill Effects on Quality

1.5

0.5040

0 19

Time (month)

Fa tigue effec t qual : base dm nl

Skill effe ct qual : ba se dm nl

You and Ken find that the fatigue table function is steeper than the skill table function.

These table functions came from prior discussions with colleagues and programmers. But,

now you know it’s important so you follow up. You ask your informants to consider two

ways of “doubling” the effective workforce: Working 80 hours per week (instead of 40),

or hiring twice as many people (and hence cutting skill in half). The consensus is that

working 80 hours a week is much more damaging, particularly in the long-haul where

fatigue continues to hurt productivity and quality of everyone. In contrast, skill levels

(particularly of experienced folks) continue to improve the longer they work on the

release.

D. You turn back to the graphs of productivity and quality (paragraph B, above). Why

doesn’t the project finish super fast when productivity and quality recover? Looking at

the graph of the workforce (paragraph A), you realize that the model is not putting on

many people at the end. Further examination shows that the people who are working

during the final quarter are working less than 40 hours a week (i.e. there is undertime). A

little more investigation shows that fewer people are working because there is very little

work in the stock of work to do. Why doesn’t the stock just empty out completely?

Because a stream of new bug discoveries flow into the stock of work to do. As the plot

below shows, the delay in finding bugs means there is a delay in finishing up the project.

The bug discovery time is three months in the model – a figure that is roughly correct

according to the people you speak to.

base

HiddenBugs

1.587 M

1.190 M

793,620

396,810

0
0 9.031 18.06

Time (month)

Sensitivity testing.

Ken suggests varying each parameter up by a factor of 2 and down by a factor 0.50 to

further improving your growing understanding of the model. Your notes from this

sensitivity analysis are:

Sensitivity Notes

1. Bug find time: Reducing the bug-find-time causes
the project to finish sooner, but also increases

the total number of staff hours. The reason:

Finding bugs faster means having more work to do,

hence more overtime and more new people –

therefore, lower productivity and quality.

2. Initial due date: Starting the project with a due
date that is further out causes lower cumulative

staff hours, but also causes the project to finish

later. The reason: With more time, there is less

overtime and less hiring, so higher productivity

and quality. The flip side of this is that fewer

people are on the project and they don’t work as

much overtime, so the project takes longer to

complete. (Note: The project over-runs its new

deadline. Managers in the model are still

“surprised” by all the bugs (even though there are

fewer) and by the fact that it takes a while to

discover them.

3. Time to fire. Reducing the time to fire lengthens
the time it takes to complete the project. The

reason: Too many people are “fired”, leaving too

few to deal with the bugs that ultimately are on

the way. Then it takes longer to “higher” people

back. (Note: The time to hire is longer than the

time to fire).

4. Time to hire. Reducing the time to hirer makes the
project end sooner and requires fewer staff hours.

The reason: Hiring faster means there is less

pressure for overtime. And, skill-dilution is less

harmful than fatigue. The trade-off works in our

favor.

5. Time to get fatigued. Doubling the time to get
fatigued has little impact. The reason: The time

to get fatigued is small relative to the length of

the project – doubling or halving the time constant

doesn’t make much difference. Also, lengthening

the time constant means it takes longer to get

fatigued, but also longer to recover.

6. Experience of new hires. Increasing the experience
level of new hires (a parameter in the model) makes

the project finish earlier and reduces the required

number of staff hours to finish. The reason: The

impact of hiring on average skill is lower.

Policy

Your task is to improve the cycle time of software development and to reduce the total

number of staff hours that go into each release. There are several policies that have been

thought up by you and different members of the programming staff.

 Freeze hiring to avoid wasting the skilled programmers’ time on training the new

hires.

 Hire people instead of allowing overtime. This requires a faster hiring process.

 Hire people with more experience.

 Limit the overtime hours that an employee can work.

 Dedicate staff (i.e. programmers) hours to training the new hires in order to bring

them up to speed more quickly.

 Find the errors in the code more quickly.

 Push out the initial due date to give the programmers some slack.

Think about these policies. Simulate as many of them as you have time for. Make sure

you understand the behavior in the simulations. Decide which policies you like and

which you dislike.

 You will need to convince other managers at Macrohard of what you think should be

done and what your think shouldn’t be done. Provide a discussion, aimed at a Macrohard

audience, of each policy’s pros and cons. Would the policy likely lead to a net benefit?

If so, explain how you would implement the policy. Is the implementation going to be

easy or hard? Expensive or inexpensive? Does the implementation have any downsides,

perhaps not represented in the model? Summarize with a recommendation to either

pursue or not to pursue the policy.

IMPORTANT NOTE: You should feel free to simulate the policies if you see an easy

way to do so. However, your explanation of pros and cons should NOT rely on the

model. That is, you should NOT say, for example, “Macrohard should do X because

when we put X into the model the project finished faster and with fewer staff hours”.

Instead, offer a logical explanation that will make sense to someone who does not know

you built a model and who will never see output from your model.

 What other policies would you recommend? Why?

 Why is it better in this case to refrain from mentioning the model or its output in your

final explanations and arguments. Is there any situation in which it would be appropriate

to base your final explanations and arguments on the model and its output? If you believe

there such situations exist, please give an example or two.

