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Pre-training on node labels
(can be self-supervised)
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Pre-training GNN ?

problem
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=Scarcity of labeled data

=Qut-of-distribution prediction
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solution
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Pre-training a model on
related tasks where data is
abundant
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* How to pre-train GNNs ?
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Naive strategy

» Supervised pre-training on relevant labels
= Unrelated tasks can even hurt the downstream performance (negative

transfer)
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Proposed strategies for pre-training GNN

= Pre-train both node and graph embeddings

Pre-training on graph labels
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Pre-training on node-level : Context Prediction

» Matching the node representation with the surrounding context
graph embedding of the node.

* Negative Sampling : Learning with binary classification problem to
predict whether they correspond to the same node
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Results

* Improve the performance
» Avoids negative transfer

Molecule classification performance
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