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Generative Model of Graphs

= Model the distribution of undirected graph ¢ = (V, E):

P(G)= ) P(G,m) = ) P(Ax) = ) P(Ly)

where m denotes a node ordering, A, is an adjacency matrix and L, denotes a
lower triangular part of A4,,.
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Existing Work

= Graph RNN [You18]

* |t models graph generation as a sequential process, which accommodate complex
dependencies between generated edges.

= O(N?) for the best model (not scalable).

* |t has significant bottlenecks in handling long-term dependencies, and the results
depend on node orderings.

[You18] Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec. Graphrnn: Generating realistic
graphs with deep auto-regressive models. In ICML 2018



Contributions

* Their model consists of O(N) auto-regressive generation steps.

» Compared to RNN-based model, they propose an atiention-based GNN that
better utilizes the topology of the already generated graphs.

* They approximate the likelihood by marginalizing over a family of canonical
node orderings.



Graph Recurrent Attention Networks (GRNN)
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Figure 1: Overview of our model. Dashed lines are augmented edges. Nodes with the same color
belong to the same block (block size = 2). In the middle right, for simplicity, we visualize the output
distribution as a single Bernoulli where the line width indicates the probability of generating the edge.



Generation Process

* They generate one block of B rows of L, for each time step.
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* Breaking the dependency between generation steps allows parallel training and
generated subgraph.

» Varying the block size permits the efficiency-quality trade-off.




Graph Recurrent Attention Networks (GRNN)

* |nitial Node Representation
hy, =WL +b, Vi<t
» Message Passing
m?; = f(hT — h7), aj; = Sigmoid (g(h] — h})),
ir _ T ) r+1 T T T
h; = [h], x;], hiTh = GRU(hi’ZjeN(i) a;;m;;)-

= Qutput Distribution

p(LE\LE ..., LT, 1)_2%1_[ 1] 6r.iis

1€by 1<5<14
.. = Softmax ( MLP,, (hE — hE )
g, y UK ZiEbt,1<j<i 06( 7 J ) )

91,’i,j7 “ e 70K,z’,j = SlngId (MLPg(hfz — hJR))



Node Representation

» They first compute the initial node representations of the already-generated
graph via a linear mapping

hy, =WL} +b, Vi<t

= For current block, hy, =0

= In practice, computing hy, . alone at tth generation step is enough, because
{h) |i <t—1} can be cached from previous steps, which reduces computation.



Graph Neural Network with Attentive Message Passing

* From the initial Node Representation, all edges associated with the current
block are generated using a GNN.

= The rth round of message passing is

m;; = f(hi — h7), a;; = Sigmoid (g(ﬁf — ﬁ;)) ,
hi = [hi, zi], hi*t = GRU(h], ZjeN(i) a;;my;).



Output Distribution

» After R round message passing, they obtain the final node representation vector,
and then model the probability of generating edges in the current block via a
mixture of Bernoulli distributions.

p(LE L ooy LT, ) ZakH 1] ki

1€by 1<5<s

— R R
aq,...,ax = Softmax (Ziebt,ISjSiMLPa(hi — h; )) ,
Hl,i,ja “ o ,HK,,,;,J' = SlngId (MLPg(hfi — hJR))



Approximated Likelihood

* They aim to maximize a lower bound:

logp(G) >log » * p(G,m)
TeQ

where the size Q achieve a tradeoff between tightness of the bound (usually
correlated with better model quality) and computational cost.

» They adopts DFS, BFS, k-core and degree descent ordering.



Experiments

= Dataset
» Grid : 100 standard 2D grid graphs with 100 < |V| <400
» Protein : 918 protein graphs with 100 < |V| < 500
= Point Cloud : 41 simulated 3D point clouds with |V|,,, >= 1k

= 64% train split, 16% valid split, 20% test split



Evaluation Metrics

» Compare the distributions of graph statistics between the generated and
ground-truth graphs, by computing the maximum mean discrepancy (MMD) over

the following 4 statistics.

Degree distributions

Clustering coefficient distributions

The number of occurrences of all orbits with 4 nodes

Spectra of the graphs (the eigenvalues of normalized graph Laplacian)

s b=
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Visualization

» Sample graphs generated by GRAN with its comparison.
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Figure 2: Visualization of sample graphs generated by different models.
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Results

» For all metrics, lower value is preferred.

Grid

Protein

3D Point Cloud

IV |mae = 361, | E|max = 684
1V |avg 2 210, | Eayg & 392

IV |max = 500, | E|max = 1575
|V ]avg = 258, |E|ayg =~ 646

IV | = 5037, | E|max = 10886
|V |ave = 1377, |E|ayg ~ 3074

Deg. Clus. Orbit Spec. Deg. Clus. Orbit  Spec. Deg. Clus. Orbit  Spec.
Erdos-Renyi 0.79 2.00 1.08 0.68 5.64¢2 1.00 1.54 9.13¢72 0.31 1.22 127 4.26e2
GraphVAE* 7.07e72  7.33e~2 0.12 1.44¢=2 0.48 7.14e72  0.74 0.11 - - - -
GraphRNN-S 0.13 3.73¢ 2 0.18 0.19 4.02¢2 479 % 0.23 0.21 - - - -
GraphRNN 1.12¢e72  7.73e % 1.03e 2 1.18e 2 1.06e2 0.14 0.88 1.88e2 - - - -
GRAN 8.23e % 3.79¢™3 1.59¢73 1.62¢72 1.98e 3 4.86e 2 013 513e 3 175¢ 2% 051 021 745¢3

Table 1: Comparison with other graph generative models. For all MMD metrics, the smaller the better.
*: our own implementation, -: not applicable due to memory issue, Deg.: degree distribution, Clus.:
clustering coefficients, Orbit: the number of 4-node orbits, Spec.: spectrum of graph Laplacian.
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Efficiency vs Sample Quality

* The main limiting factor for graph generation speed is the number of generation
steps T, which is related to the block size B.

» |[f B grows, which can improve speed, the model quality may suffer.
» They propose “stride sampling”, where neighboring blocks have an overlap
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