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Self-Attention Graph-Pooling

= |ntroduction

Graph pooling
A smaller graph
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* Lecture note 13, p 15

 Intuition: Down-sample by selecting the most important nodes
» # of nodes: decrease, dimension of graphs: consistent

J. Y. Choi. SNU



Self-Attention Graph-Pooling

* Proposed Method

1) Self-Attention Score: Utilizing the graph convolution
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* idx = top —rank(Z,[kN]), Zmask = Ziax
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Self-Attention Graph-Pooling

* Proposed Method
2) Graph Pooling
« X' = Xidx» Xout — XI@Zmask: Aout= Aidx,idx
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Self-Attention Graph-Pooling
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Self-Attention Graph-Pooling

= Results

* 1) SOTA of Both on Pool,; and Pool;, architecture

* 2) Pool, for smaller graph, Pool, for a large number of nodes

Table 3. Average accuracy and standard deviation of the 20 random seeds. The subscript g (e.g. POOL,) denotes the global pooling
architecture and the subscript i (e.g. POO L;,) denotes the hierarchical pooling architecture.

Models D&D PROTEINS NCI1 NCI109 FRANKENSTEIN
Set2Set, 7127084 66.06=1.66 = 68.55=+x1.92 69.78 = 1.16 61.92 £ 0.73
SortPool, 7253+ 1.19 66.724+£ 356 @ 73.82+£096 74.02 =+ 1.18 60.61 £ 0.77
SAGPool, (Ours) 76.19 =094 70.04 =147 7418+ 1.20 74.06=0.78 62.57 = 0.60
DiffPooly, 66.95 £ 2.41  68.20 £2.02 62.32+190 61.98+1.98 60.60 £ 1.62
gPoolp .01 =086 71.10=0.90 67.02L£225 66.12 = 1.60 61.46 = 0.84
SAGPooly, (Ours) = 76.45 =097 71.86 =097 67.45x+1.11 67.86=x1.41 61.73 = 0.76
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Self-Attention Graph-Pooling

» Results
 3) Same as O(|V| + |E]|) of gPool, but 0(|V]?) of DiffPool
« 4) Consistent number of parameters regardless of the input
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Conclusions and Remarks

= Conclusion:

1) Applying the concept of self-attention into a graph pooling

2) Showed a reasonable complexity, and end-to-end representation learning
3) Possible to expand with many variants(e.g. with SAGE, GAT)

» Future works:
Learnable pooling ratio, optimal cluster size, effects of multiple attention mask
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