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Generative Model of Graphs

§ Model the distribution of undirected graph ! = #, % :
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where * denotes a node ordering, ,) is an adjacency matrix and .) denotes a 
lower triangular part of ,).
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Existing Work

§ Graph RNN [You18]

§ It models graph generation as a sequential process, which accommodate complex
dependencies between generated edges.

§ O(N2) for the best model (not scalable).

§ It has significant bottlenecks in handling long-term dependencies, and the results 
depend on node orderings.
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Contributions

§ Their model consists of O(N) auto-regressive generation steps.

§ Compared to RNN-based model, they propose an attention-based GNN that 
better utilizes the topology of the already generated graphs.

§ They approximate the likelihood by marginalizing over a family of canonical 
node orderings.
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Graph Recurrent Attention Networks (GRNN)
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Generation Process

§ They generate one block of B rows of !" for each time step.

§ Breaking the dependency between generation steps allows parallel training and 
generated subgraph.

§ Varying the block size permits the efficiency-quality trade-off.
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Graph Recurrent Attention Networks (GRNN)

§ Initial Node Representation

§ Message Passing

§ Output Distribution
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§ They first compute the initial node representations of the already-generated 
graph via a linear mapping

§ For current block, 
§ In practice, computing alone at tth generation step is enough, because 

can be cached from previous steps, which reduces computation.

Node Representation
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Graph Neural Network with Attentive Message Passing

§ From the initial Node Representation, all edges associated with the current 
block are generated using a GNN.

§ The rth round of message passing is
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Output Distribution

§ After R round message passing, they obtain the final node representation vector, 
and then model the probability of generating edges in the current block via a 
mixture of Bernoulli distributions.
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Approximated Likelihood

§ They aim to maximize a lower bound:

where the size Q achieve a tradeoff between tightness of the bound (usually 
correlated with better model quality) and computational cost.

§ They adopts DFS, BFS, k-core and degree descent ordering.
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Experiments

§ Dataset 
§ Grid : 100 standard 2D grid graphs with 100 < |V| < 400
§ Protein : 918 protein graphs with 100 < |V| < 500
§ Point Cloud : 41 simulated 3D point clouds with |V|avg >= 1k

§ 64% train split, 16% valid split, 20% test split
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Evaluation Metrics

§ Compare the distributions of graph statistics between the generated and 
ground-truth graphs, by computing the maximum mean discrepancy (MMD) over 
the following 4 statistics.
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1. Degree distributions
2. Clustering coefficient distributions
3. The number of occurrences of all orbits with 4 nodes
4. Spectra of the graphs (the eigenvalues of normalized graph Laplacian)



Visualization

§ Sample graphs generated by GRAN with its comparison.
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Results

§ For all metrics, lower value is preferred.
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Efficiency vs Sample Quality

§ The main limiting factor for graph generation speed is the number of generation 
steps T, which is related to the block size B.

§ If B grows, which can improve speed, the model quality may suffer.
§ They propose “stride sampling”, where neighboring blocks have an overlap
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